
www.ebook3000.com

http://www.ebook3000.org

Building Modern Web
Applications Using Angular

Learn how to create rich and compelling web applications
with Angular

Shravan Kumar Kasagoni

BIRMINGHAM - MUMBAI

Building Modern Web Applications Using
Angular
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

 First published: May 2017

Production reference: 1240517

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78588-072-8

www.packtpub.com

www.ebook3000.com

http://www.packtpub.com
http://www.ebook3000.org

Credits

Author
Shravan Kumar Kasagoni

Copy Editors
Safis Editing
Dipti Mankame

Reviewers
Hemant Singh
Phodal Huang

Project Coordinator
Judie Jose

Acquisition Editors
Tushar Gupta

Proofreader
Safis Editing

Content Development Editor
Juliana Nair

Indexer
Rekha Nair

Technical Editor
Mohd Riyan Khan

Graphics
Kirk D'Penha

Production Coordinator
Melwyn Dsa

  

About the Author
Shravan Kumar Kasagoni is a developer, gadget freak, technology evangelist, mentor,
blogger, and speaker living in Hyderabad. He has been passionate about computers and
technology right from childhood. He holds a bachelors degree in computer science and
engineering, and he is a Microsoft Certified Professional.

His expertise includes modern web technologies (HTML5, JavaScript, and Node.js) and
frameworks (Angular, React.js, Knockout.js, and so on). He has also worked on many
Microsoft technologies, such as ASP.NET MVC, ASP.NET WEB API, WCF, C#, SSRS, and
the Microsoft cloud platform Azure.

He is a core member of Microsoft User Group Hyderabad, where he helps thousands of
developers on modern web technologies and Microsoft technologies. He also actively
contributes to open source community. He is a regular speaker at local user groups and
conferences. Shravan has been awarded Microsoft's prestigious Most Valuable Professional
award for past 6 years in a row for his expertise and community contributions in modern
web technologies using ASP.NET and open source technologies.

He is currently working with Novartis India, where he is responsible for the design and
development of high-performance modern enterprise web applications and RESTful APIs.
Previously, he was associated with Thomson Reuters and Pramati Technologies.

I would like to thank my wife for putting up with my late-night writing sessions, my
parents, and brother for their constant support. I also give deep thanks and express
 gratitude to my close friends, Pranav and Ashwini Reddy, who have always been there to
encourage, guide, and help me.
I would also like to thank my former colleagues Monisha and Dharmendra, and my friends,
Abhijit Jana, Sudhakar, Subhendu, Sai Kiran, Srikar Ananthula, and Raghu Ram. I am
thankful to my mentors, Nagaraju Bende and Mallikarjun, without whom I may not have
got here.

www.ebook3000.com

http://www.ebook3000.org

About the Reviewers
Hemant Singh is a developer living in Hyderabad/AP, India. Currently, he is working for
Microsoft as a UX consultant. He loves open source, and is active in various projects.
Hemant is not much of a blogger, but tries to share information whenever possible.

He handcrafts CSS and HTML documents and handles JavaScript (the good parts). It won’t
be surprising if he tells you that he fell in love with HTML5 and, of course, CSS3. Hemant
also has a passion for user interface and experience design and tries to show some of his
work in his portfolio.

Phodal Huang is a developer, creator, and author. He works for ThoughtWorks as a
consultant. Currently, he focuses on IoT and frontend development. He is the author of
Design Internet of Things and Growth: Thinking in Full Stack in Chinese .

He is an open source enthusiast, and has created a series of projects in GitHub. After his
daily work, he likes to reinvent some wheels for fun. He created the application Growth
with Ionic 2 and Angular 2 , which is about coaching newbies about programming. You can
find out more about wheels on his GitHub page, h t t p ://g i t h u b . c o m /p h o d a l .

He loves designing, writing, hacking, and traveling. You can also find out more about him
on his personal website at h t t p ://w w w . p h o d a l . c o m .

http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://github.com/phodal
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com
http://www.phodal.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.ebook3000.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
http://www.ebook3000.org

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1785880721.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721
https://www.amazon.com/dp/1785880721

Table of Contents
Preface 1

Chapter 1: Getting Started 6

Introduction to Angular 6
What is new in Angular? 7

Setting up the environment 7
Installing Node.js and npm 8

Language choices 8
ECMAScript 5 9
ECMAScript 2015 9
TypeScript 9
Installing TypeScript 10
TypeScript basics – types 10

String 11
Number 11
Boolean 11
Array 11
Enum 11
Any 12
Void 12
Functions 13

Function declaration – named function 14
Function expression – anonymous function 14

Classes 14
Writing your first Angular application 16

Set up the Angular application 16
Step 1 16
Step 2 18
Step 4 19
Step 5 20
Step 6 21
Step 7 22
Step 8 22

SystemJS 23
Using the Angular component 24
Understanding npm packages 25

Step 9 26
Step 10 26

Using Angular CLI 28

www.ebook3000.com

http://www.ebook3000.org

[ii]

Getting started with Angular CLI 28
Summary 29

Chapter 2: Basics of Components 31

Getting started 31
Project setup 31

Working with data 34
Displaying data 35

Interpolation syntax 35
Property binding 37
Attribute binding 38

Event binding 38
Two-way data binding 41

Built-in directives 42
Structural directives 42

ngIf 43
ngFor 43

Understanding ngFor syntax 43
ngSwitch 44

Attribute directives 45
ngStyle 45
ngClass 46

Building the master-detail component 47
Summary 53

Chapter 3: Components, Services, and Dependency Injection 54

Introduction 54
Working with multiple components 55

Input properties 57
Aliasing input properties 58

Output properties 59
Aliasing output properties 61

Sharing data using services 63
Dependency injection 67

Using a class provider 67
Using a class provider with dependencies 68
Using alternate class providers 69
Using aliased class providers 70

Summary 71

Chapter 4: Working with Observables 72

Basics of RxJS and Observables 72
Reactive programming 72

[iii]

Observer 73
Observable 74
Subscription 76
Operators 76

Observables in Angular 77
Observable stream and mapping values 77
Merging Observable streams 78
Using the Observable.interval() method 79
Using AsyncPipe 81
Building a Books Search component 82

Summary 90

Chapter 5: Handling Forms 91

Why are forms hard? 91
Angular forms API 91

FormControl, FormGroup, and FormArray 92
FormControl 92

Creating a form control 92
Accessing the value of an input control 93
Setting the value of input control 93
Resetting the value of an input control 93
Input control states 93

FormGroup 94
FormArray 95

Template driven forms 96
Creating a registration form 96

Using the ngModel directive 99
Accessing an input control value using ngModel 100
Using ngModel to bind a string value 101
Using ngModel to bind a component property 102
Using the ngForm directive 105
Submitting a form using the ngSubmit method 106
Using the ngModelGroup directive 110
Adding validations to the registration form 112

Pros and cons of template driven forms 116
Reactive forms 117

Creating a registration form using reactive forms 117
Using FormGroup, FormControl, and Validators 118
Using [formGroup], formControlName, and formGroupName 119
Using FormBuilder 121
CustomValidators 122

Pros and cons of reactive forms 125
Summary 125

www.ebook3000.com

http://www.ebook3000.org

[iv]

Chapter 6: Building a Book Store Application 126

Book Store application 126
HTTP 126

Making GET requests 131
Routing 137

Defining routes 137
RouterOutlet Directive 139

Named RouterOutlet 142
Navigation 142
Route params 142
Animating routed components 148

Feature modules using @NgModule() 150
Summary 153

Chapter 7: Testing 154

Testing 154
Unit testing 155
End-to-end testing 155
Tooling 155
Configuration files 155

Jasmine basics 156
Unit testing 157

Isolated unit tests 157
Writing basic isolated unit tests 159
Testing services 161

Mocking dependencies 162
Testing components 164

Integrated unit tests 165
Testing components 165
Testing components with dependencies 169

Summary 172

Chapter 8: Angular Material 173

Introduction 173
Getting started 173
Project setup 174

Using Angular Material components 176
Master-detail page 176
Books list page 183
Add book dialog 189
User registration form 193

[v]

Adding themes 197
Summary 199

Index 200

www.ebook3000.com

http://www.ebook3000.org

Preface
Building Modern Web Applications Using Angular helps readers to design and develop
modern web applications. It provides a solid understanding of the Angular 4 framework.
Readers will learn how to build and architect high-performance web applications mainly
focusing on UI. This is an end-to-end guide for all the new features in Angular 4. This book
also covers some of the latest JavaScript concepts in ECMAScript 2015, ECMAScript 2016,
and TypeScript.

This book will take you from nowhere when it comes to building UI applications for Web
and mobile to become a master using Angular 4. It will explain almost every feature of the
Angular 4 framework with a particle approach and lots of examples, showing how to use
them in real-world scenarios to build compelling UI applications. Chapters at the end of the
book are dedicated to show how to build an end-to-end application UI using individual
Angular 4 features that were explained in previous chapters.

What this book covers
Chapter 1, Getting Started, introduces the Angular 4 framework and its new features, how
Angular 4 is better and more powerful than its predecessor Angular 1, development
environment setup for Angular 4 applications. Also, it provides a quick insight
into TypeScript and its features, how to write a basic Angular 4 app, and understanding its
anatomy.

Chapter 2, Basics of Components, walks through the basics of Angular 4 components,
starting with display data using interpolation syntax, property binding, attribute binding,
working with DOM events, and two-way data binding. It also introduces structural
directives for conditionally displaying data and attribute directives for conditional styling.

Chapter 3, Components, Services, and Dependency Injection, walks through how to develop
Angular 4 applications using multiple components, communicating between components,
sharing the data between these components using services and injecting services using
dependency injection, as well as how dependency injection works.

Chapter 4, Working with Observables, focuses on reactive programming, Observables, RxJS,
how Angular 4 implements Observables using RxJS, and using Observables and RxJS
operators in Angular 4 applications.

Preface

[2]

Chapter 5, Handling Forms, introduces how to create different types of forms in Angular 4
applications to accept user input and validate it using template-driven forms, reactive
forms, and validation directives.

Chapter 6, Building a Book Store Application, walks through how to structure tiny to a
complex application using Angular 4 modules, build various types of user interfaces in a
Book Store application, navigate between components using routing, interact with the
server using the HTTP service.

Chapter 7, Testing, introduces how to write unit tests using Jasmine and Angular Test
Utilities for various parts of Angular 4 applications.

Chapter 8, Angular Material, walks through how to build a single compelling UI, which
flows across desktops, tablets, and mobile devices, using material design, and learning how
to customize material design as per customer branding.

What you need for this book
This book assumes a basic knowledge of JavaScript, web development, how to use
command line, Git, and node package manager (npm).

In this book, you will need the following software list:

Operating system:
MAC OS X 10.9 and higher
WINDOWS 7 and higher

Node.js 6:
MAC: h t t p s ://n o d e j s . o r g /d i s t /v 6. 10. 3/n o d e - v 6. 10. 3. p k g

Windows: h t t p s ://n o d e j s . o r g /d i s t /v 6. 10. 3/n o d e - v 6. 10. 3- x
64. m s i

Any code editor
Visual Studio Code
Sublime

Internet connectivity is required to install the necessary npm packages.

www.ebook3000.com

https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
http://www.ebook3000.org

Preface

[3]

Who this book is for
This book is for developers building web applications who are new to the Angular world
and interested in creating modern, responsive, complex UI applications using Angular 4.
For developers who are already working with the AngularJS 1 framework, this book
provides an upgrading path with new concepts.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, folder names, filenames, file extensions, path names, URLs, user input,
and Twitter handles are shown as follows:

A block of code is set as follows:

import { Component } from '@angular/core';

@Component({
 selector: 'hello-world-app',
 template: '<h1>Say Hello to Angular</h1>'
})
class HelloWorldAppComponent { }

Any command-line input or output is written as follows:

$ npm install json-server -save

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

www.ebook3000.com

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.ebook3000.org

Preface

[5]

The complete set of code can also be downloaded from the following GitHub repository: h t
t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /B u i l d i n g - M o d e r n - W e b - A p p l i c a t i o n - u s i n g - A n g u l

a r . We also have other code bundles from our rich catalog of books and videos available at:
h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

1
Getting Started

In this chapter, we are going to learn the Angular framework basics and new features. We
will learn how to use features from future versions of JavaScript and TypeScript to develop
modern web applications using Angular. After going through this chapter, the reader will
understand the following concepts:

The Angular framework and its new features
Setting up the environment for development
The basics of TypeScript
Angular application basics
How to write your first Angular application?

Introduction to Angular
What is Angular? It is an open source modern JavaScript framework in order to build the
Web, mobile web, native mobile, and native desktop applications. It can also be used in
combination with any server-side web application framework, such as ASP.NET and
Node.js. Angular is the successor of AngularJS 1, which is one of the best JavaScript
frameworks for building client-slide web applications, used by millions of developers
across the globe.

Even though the developer community highly appreciates AngularJS 1, it has its challenges.
Many developers feel that the AngularJS 1 learning curve is high. Out-of-the-box
performance in complex applications with a huge amount of data is not that great, which is
essential in enterprise applications. The API to build directives is very confusing and
complex, even for an experienced AngularJS 1 programmer, which is the key concept to
build UI applications based component-based architecture.

www.ebook3000.com

http://www.ebook3000.org

Getting Started

[7]

Angular is the next version of AngularJS 1.x, but it is a complete rewrite from its
predecessor. It is built on top of the latest web standards (web components, Observables,
and decorators), the learning curve is minimal, and performance is better. This book will
cover the latest version of Angular, which is version 4, at the time of writing this book.
Angular 4 is an incremental update from Angular 2, unlike Angular 2.

When we use the term Angular, we are referring to the latest version of
the framework. Anywhere we need to discuss version 1.x, we will use the
term AngularJS.

What is new in Angular?
Many concepts in version 1.x are irrelevant in Angular, such as controller, directive
definition object, jqLite, $scope, and $watch. Even though lots of concepts are irrelevant,
lots of goodness in AngularJS 1.x is carried forward to Angular such as services,
dependency injection, and pipes. Here is a list of the new features in Angular:

Components
New templating syntax
Unidirectional data flow
Ultra-fast change detection
New component router
Observables
Server-side rendering
New languages for development
ES2015
TypeScript
Ahead of time compilation

Setting up the environment
We can start developing our Angular applications without any setup. However, we are
going to use Node.js and npm (node package manager) for tooling purposes. We need
them for downloading tools, libraries, and packages. We also use them for build process
automation. Angular applications are as follows:

Getting Started

[8]

Node.js is a platform built on top of V8, Google's JavaScript runtime, which also
powers the Chrome browser
Node.js is used for developing server-side JavaScript applications
The npm is a package manager for Node.js, which makes it quite simple to install
additional tools via packages; it comes bundled with Node.js

Installing Node.js and npm
The easiest way to install Node is to follow the instructions at: h t t p s ://n o d e j s . o r g .
Download the latest version of Node for the respective operating system and install it. The
npm is installed as part of the Node.js installation.

Once we install Node.js, run the following commands on the command line in Windows or
Terminal in macOS to verify that Node.js and npm are installed and set up properly:

$ node -v
$ npm -v

The preceding commands will display currently installed Node.js and npm versions,
respectively:

The Angular documentation recommends installing at least Node.js v4.x.x,
NPM 3.x.x, or higher versions.

Language choices
We can write the Angular applications in JavaScript or any language that can be compiled
into JavaScript. Here, we are going to discuss the three primary language choices.

www.ebook3000.com

https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
http://www.ebook3000.org

Getting Started

[9]

ECMAScript 5
ECMAScript 5 (ES5) is the version of JavaScript that runs in today's browsers. The code
written in ES5 does not require any additional transpilation or compilation, and there is no
new learning curve. We can use this as it is to develop Angular applications.

ECMAScript 2015
ECMAScript 2015 (ES2015), previously known as ECMAScript 6 (ES6), is the next version
of JavaScript. ES2015 is a significant update to the JavaScript language; the code written in
ES2015 is a lot cleaner than ES5. ES2015 includes a lot of new features to increase the
expressiveness of JavaScript code (for example, classes, arrows, and template strings).

However, today's browsers do not support all the features of ES2015 completely (for more
information please refer to: h t t p s ://c a n i u s e . c o m /#s e a r c h =e s 6). We need to use
transpilers like Babel to transform ES2015 code into ES5-compatible code so that it works in
today's browsers.

Babel is a JavaScript transpiler, and it transpiles our code written in
ES2015 to ES5 that runs in our browsers (or on your server) today. Learn
more about Babel at h t t p s ://b a b e l j s . i o .

TypeScript
TypeScript is a superset of JavaScript, which means all the code written in JavaScript is
valid TypeScript code, and TypeScript compiles back to simple standards-based JavaScript
code, which runs on any browser, for any host, on any OS. TypeScript lets us write
idiomatic JavaScript. It provides optional static types that are useful for building scalable
JavaScript applications and other features such as classes, modules, and decorators from
future versions of the JavaScript.

It provides the following features to improve developer productivity and build scalable
JavaScript applications:

Static checking
Symbol-based navigation
Statement completion
Code refactoring

https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://caniuse.com/#search=es6
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io
https://babeljs.io

Getting Started

[10]

These features are critical in large-scale JavaScript application developments, so in this
book, we are going to use TypeScript for writing Angular applications. The Angular
framework itself was developed in TypeScript.

All the ECMAScript 5 code is valid in ECMAScript 2015; all ECMAScript
2015 code is valid TypeScript code.

Installing TypeScript
We can install TypeScript in multiple ways, and we are going to use npm, which we
installed earlier. Go to the command line in Windows or Terminal in macOS and run the
following command:

$ npm install -g typescript

The preceding command will install the TypeScript compiler and makes it available
globally.

TypeScript basics – types
TypeScript uses .ts as a file extension. We can compile TypeScript code into JavaScript by
invoking the TypeScript compiler using the following command:

$ tsc <filename.ts>

JavaScript is a loosely typed language, and we do not need to declare the type of a variable
ahead of time. The type will be determined automatically while the program is being
executed. Because of the dynamic nature of JavaScript, it does not guarantee any type
safety. TypeScript provides an optional type system to ensure type safety.

www.ebook3000.com

http://www.ebook3000.org

Getting Started

[11]

In this section, we are going learn the important data types in TypeScript.

String
In TypeScript, we can use either double quotes (") or single quotes (') to surround strings
similar to JavaScript.

var bookName: string = "Angular";
bookName = 'Angular UI Development';

Number
As in JavaScript, all numbers in TypeScript are floating point values:

var version: number = 4;

Boolean
The boolean data type represents the true/false value:

var isCompleted: boolean = false;

Array
We have two different syntaxes to describe arrays, and the first syntax uses the element
type followed by []:

var fw: string[] = ['Angular', 'React', 'Ember'];

The second syntax uses a generic array type, Array<elementType>:

var fw: Array<string> = ['Angular', 'React', 'Ember'];

Enum
TypeScript includes the enum data type along with the standard set of data types from
JavaScript. In languages such as C# and JAVA, an enum is a way of giving more friendly
names to sets of numeric values, as shown in the following code snippet:

enum Frameworks { Angular, React, Ember };
var f: Frameworks = Frameworks.Angular;

Getting Started

[12]

The numbering of members in the enum type starts with 0 by default. We can change this
by manually setting the value of one of its members. As illustrated earlier, in code snippet,
the Frameworks.Angular value is 0, the Frameworks.React value is 1, and the
Frameworks.Ember value is 2.

We can change the starting value of enum type to 5 instead of 0, and remaining members
follow the starting value:

enum Frameworks { Angular = 5, React, Ember };
var f: Frameworks = Frameworks.Angular;
var r: Frameworks = Frameworks.React;

In the preceding code snippet, the Frameworks.Angular value is 5, the
Frameworks.React value is 6, and the Frameworks.Ember value is 7.

Any
If we need to opt out type-checking in TypeScript to store any value in a variable whose
type is not known right away, we can use any keyword to declare that variable:

var eventId: any = 7890;
eventId = 'event1';

In the preceding code snippet while declaring a variable, we are initializing it with the
number value, but later we are assigning the string value to the same variable. TypeScript
compiler will not report any errors because of any keyword. Here is one more example of
an array storing different data type values:

var myCollection:any[] = ["value1", 100, 'test', true];
myCollection[2] = false;

Void
The void keyword represents not having any data type. Functions without return
keyword do not return any value, and we use void to represent it.

function simpleMessage(): void {
 alert("Hey! I return void");
}

www.ebook3000.com

http://www.ebook3000.org

Getting Started

[13]

Let's write our first TypeScript example and save it into the example1.ts file:

var bookName: string = 'Angular UI Development';
var version: number = 2;
var isCompleted: boolean = false;
var frameworks1: string[] = ['Angular', 'React', 'Ember'];
var frameworks2: Array<string> = ['Angular', 'React', 'Ember'];
enum Framework { Angular, React, Ember };
var f: Framework = Framework.Angular;
var eventId: any = 7890;
eventId = 'event1';
var myCollection:any[] = ['value1', 100, 'test', true];
myCollection[2] = false;

Let's compile the example1.ts file using the TypeScript command-line compiler:

$ tsc example1.ts

The preceding command will compile TypeScript code into plain JavaScript code into the
example1.js file; this is how it will look, and it is plain JavaScript:

var bookName = 'Angular UI Development';
var version = 2;
var isCompleted = false;
var frameworks1 = ['Angular', 'React', 'Ember'];
var frameworks2 = ['Angular', 'React', 'Ember'];
var Framework;
(function (Framework) {
 Framework[Framework["Angular"] = 0] = "Angular";
 Framework[Framework["React"] = 1] = "React";
 Framework[Framework["Ember"] = 2] = "Ember";
})(Framework || (Framework = {}));
;
var f = Framework.Angular;
var eventId = 7890;
eventId = 'event1';
var myCollection = ['value1', 100, 'test', true];
myCollection[2] = false;

Functions
Functions are the fundamental building blocks of any JavaScript application. In JavaScript,
we declare functions in two ways.

Getting Started

[14]

Function declaration – named function
The following is an example of function declaration:

function sum(a, b) {
return a + b;
}

Function expression – anonymous function
The following is an example of function expression:

var result = function(a, b) {
 return a + b;
}

In JavaScript, unlike any other concept, there is no type safety for functions also. We do not
have any assurance on data types of parameters, return type, the number of parameters
passed to function, TypeScript guarantees all this. It supports both the syntaxes.

Here are the same functions written in TypeScript:

function sum(a: number, b: number): number {
 return a + b;
}

var result = function(a: number, b: number): number {
return a + b;
}

The preceding TypeScript functions are very similar to the JavaScript syntax except
parameters, and return type has type on them, which ensures type safety while invoking
them.

Classes
The ES5 does not have the concept of classes. However, we can mimic the class structure
using different JavaScript patterns. The ES2015 does support classes. However, today, we
can already write them in TypeScript. In fact, the ECMAScript 2015 class syntax is inspired
by TypeScript.

www.ebook3000.com

http://www.ebook3000.org

Getting Started

[15]

The following example shows a person class written in TypeScript:

class Person {
 name: string;
 constructor(name: string) {
 this.name = name;
 }
 sayHello() {
 return 'Hello ' + this.name;
 }
}

var person = new Person('Shravan');
console.log(person.name);
console.log(person.sayHello());

The preceding Person class has three members - a property named name, a constructor,
and a method sayHello. We should use this keyword to refer to the properties of the class.
We created an instance of the Person class using the new operator. In the next step, we
invoke the sayHello() method of the Person class using its instance created in the
previous step.

Save the preceding code into the person.ts file and compile it using the TypeScript
command-line compiler. It will compile TypeScript code into plain JavaScript code into the
person.js file:

 $ tsc person.ts

Here is the plain JavaScript code, which was compiled from the TypeScript class:

var Person = (function () {
 function Person(name) {
 this.name = name;
 }
 Person.prototype.sayHello = function () {
 return 'Hello ' + this.name;
 };
 return Person;
}());

var person = new Person('Shravan');
console.log(person.name);
console.log(person.sayHello());

Getting Started

[16]

To learn more about functions, classes, and other concepts in TypeScript,
check out h t t p ://t y p e s c r i p t l a n g . o r g .

Writing your first Angular application
Angular follows a component-based approach to building an application. An application
written in AngularJS 1 is a set of individual controllers and views, but in Angular, we need
to treat our application as a component tree.

The Angular application component tree will have one root component; it will act as
the entry point of the application. All the other components that are part of the application
will load inside the root component, and they can be nested in any way that we need inside
the root component.

Angular also has the concept of modules, which are used for grouping components with
similar functionality. An Angular application should have minimum one module and
minimum one component that should be part of that module. Component acts as root
component, and module acts as root module.

Set up the Angular application
Let' us begin writing our first Angular application by creating the following folder structure
and files:

hello-world
├─ index.html
├─ package.json
├─ tsconfig.json
└─ src
└─ app.ts

Step 1
As we are going to write our application in TypeScript, let us begin with the
tsconfig.json file first. It is the TypeScript configuration file that contains instructions for
its compiler on how to compile TypeScript code into JavaScript. If we do not use the
tsconfig.json file, the TypeScript compiler uses the default flags during compilation, or
we can pass our flags manually every time while compiling.

www.ebook3000.com

http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://typescriptlang.org
http://www.ebook3000.org

Getting Started

[17]

The tsconfig.json file is the best way to pass the flags to the TypeScript compiler, so we
do not need to type them every time. Some of the flags here are mandatory for the Angular
application written in TypeScript; we are going to use this file throughout the book. Add
the following code to the tsconfig.json file:

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "moduleResolution": "node",
 "sourceMap": true,
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true,
 "lib": ["es2015", "dom"],
 "noImplicitAny": true,
 "suppressImplicitAnyIndexErrors": true,
 "typeRoots": ["node_modules/@types/"]
 },
 "compileOnSave": true,
 "exclude": ["node_modules/*"]
}

Downloading the example code
Detailed steps to download the code bundle are mentioned in the Preface
of this book. The code bundle for the book is also hosted on GitHub at: h t t
p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /B u i l d i n g - M o d e r n - W e b - A p p l i c a t i o

n - u s i n g - A n g u l a r . We also have other code bundles from our rich catalog
of books and videos available at: h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g

/. Check them out!

The explanation for flags specified in the tsconfig.json file are as follows:

target: Specifies ECMAScript target version: es3 (default), es5, or es2015
module: Specifies module code generation: commonjs, amd, system, umd or
es2015

moduleResolution: Specifies module resolution strategy: node (Node.js) or
classic (TypeScript pre-1.6)
sourceMap: If true, generates corresponding .map file for .js file
emitDecoratorMetadata: If true, enables the output JavaScript to create the
metadata for the decorators
experimentalDecorators: If true, enables experimental support for ES7
decorators

https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/Building-Modern-Web-Application-using-Angular
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Getting Started

[18]

lib: Specifies library files to be included in the compilation
noImplicitAny: If true, raise error if we use any type on expressions and
declarations

Step 2
Let us add the following code to the package.json file, which holds metadata for npm and
contains all the Angular packages and third-party libraries required for Angular application
development:

{
 "name": "hello-world",
 "version": "1.0.0",
 "scripts": {
 "prestart": "npm run build",
 "start": "concurrently \"tsc -w\" \"lite-server\"",
 "build": "tsc"
 },
 "license": "ISC",
 "dependencies": {
 "@angular/common": "^4.0.0",
 "@angular/compiler": "^4.0.0",
 "@angular/core": "^4.0.0",
 "@angular/platform-browser": "^4.0.0",
 "@angular/platform-browser-dynamic": "^4.0.0",
 "core-js": "^2.4.1",
 "rxjs": "^5.1.0",
 "systemjs": "0.20.12",
 "zone.js": "^0.8.4"
 },
 "devDependencies": {
 "@types/node": "^6.0.45",
 "concurrently": "^3.4.0",
 "lite-server": "^2.3.0",
 "typescript": "~2.2.0"
 }
}

In the preceding code snippet, there are two important sections:

dependencies: This holds all packages required for application to run
devDependencies: This holds all packages required only for development

www.ebook3000.com

http://www.ebook3000.org

Getting Started

[19]

Once we add the preceding code to the package.json file in our project, we should run
the following command at the root of our application:

$ npm install

The preceding command will create the node_modules folder in the root of project, and it
downloads all the packages mentioned in the dependencies and devDependencies
sections into the node_modules folder.

There is one more section in the package.json file, that is, scripts. We will discuss the
scripts section when we are ready to run our application.

Step 4
We have the basic setup ready for our application; now let's write some code by beginning
with a module. An Angular module in TypeScript is simply a class annotated it with the
@NgModule() decorator.

Add the following code to the app.ts file under the src folder:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

@NgModule({
 imports: [BrowserModule],
 declarations: [],
 bootstrap: []
})
class HelloWorldAppModule {}

We imported the NgModule decorator from the @angular/core module and
BrowserModule from the @angular/platform-browser module using ES2015 module
imports syntax; we will discuss these modules later.

We declared a class and annotated it with the @NgModule() decorator. The @NgModule()
decorator takes a configuration object as the parameter with a couple of properties; here is
what they mean.

Getting Started

[20]

imports We need to specify the other modules on which our module is
dependent. We are going to run our application in a browser, so our
module depends on BrowserModule; we imported it and added it to this
array.

declarations We need to specify that the components, directives, and pipes belong to
this module.

bootstrap We need to specify the components that must be bootstrapped when this
module is bootstrapped. The components added here will automatically
be added to the entryComponents property. The components specified
in the entryComponents will be compiled when the module is defined.

The @NgModule() is a decorator; the decorator is a function that adds the metadata to class
declaratively without modifying its original behavior.

Step 5
In the previous step, we created a module, but the module does not do anything. It is just a
container for components; actual logic needs to be written inside a component. Let's write
our first component in Angular. An Angular component in TypeScript is simply a class
annotated with the @Component() decorator:

@Component({})
class HelloWorldAppComponent {}

The @Component() decorator tells Angular that this class is an Angular component, and we
can pass a configuration object to the @Component() function that has two properties - a
selector and a template:

@Component({
 selector: 'hello-world-app',
 template: '<h1>Say Hello to Angular</h1>'
})

The selector property specifies a CSS selector (custom tag name) for the component that
can be used in HTML.

www.ebook3000.com

http://www.ebook3000.org

Getting Started

[21]

The template property specifies the HTML template for the component that tells Angular
how to render a view. Our template is a single line of HTML Say Hello to Angular
surrounded with the h1 tag. We can also specify a multiline template string. Instead of
using the inline template, we can use the external template stored in a different file using
the templateUrl property.

Let us also add this code to the app.ts file under the src folder:

import { Component } from '@angular/core';

@Component({
 selector: 'hello-world-app',
 template: '<h1>Say Hello to Angular</h1>'
})
class HelloWorldAppComponent {}

Step 6
We have our component ready, and we need to associate this component to a module. Let's
add the component to the declarations array of the app module created in Step 4, and we
also need this component bootstrapped as soon as a module is bootstrapped, so add this to
the bootstrap array also. Let us add all this code to the app.ts file under the src folder:

import { NgModule, Component } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

@Component({
 selector: 'hello-world-app',
 template: '<h1>Say Hello to Angular</h1>'
})
class HelloWorldAppComponent {}

@NgModule({
 imports: [BrowserModule],
 declarations: [HelloWorldAppComponent],
 bootstrap: [HelloWorldAppComponent]
})
class HelloWorldAppModule {}

Getting Started

[22]

Step 7
The next step is to bootstrap our module. This can be done using the bootstrapModule()
method; it is available in the PlatformRef class. We can get the instance of the
PlatformRef class using the platformBrowserDynamic() function available in the
@angular/platform-browser-dynamic module:

import { platformBrowserDynamic } from
 '@angular/platform-browser-dynamic';

platformBrowserDynamic().bootstrapModule(HelloWorldAppModule);

The app.ts file finally looks as follows after adding the module bootstrapping logic:

import { NgModule, Component } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { platformBrowserDynamic } from
 '@angular/platform-browser-dynamic';

@Component({
 selector: 'hello-world-app',
 template: '<h1>Say Hello to Angular</h1>'
})
class HelloWorldAppComponent { }

@NgModule({
 imports: [BrowserModule],
 declarations: [HelloWorldAppComponent],
 bootstrap: [HelloWorldAppComponent]
})
class HelloWorldAppModule { }

platformBrowserDynamic().bootstrapModule(HelloWorldAppModule);

Step 8
Let us use the component we created in the earlier step, add following code in index.html:

<html>
<head>
 <title>Angular Hello World</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">

www.ebook3000.com

http://www.ebook3000.org

Getting Started

[23]

 <script src="node_modules/core-js/client/shim.js"></script>
 <script src="node_modules/zone.js/dist/zone.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>

 <script>
 System.config({
 paths: {
 'ng:': 'node_modules/@angular/'
 },
 map: {
 '@angular/core': 'ng:core/bundles/core.umd.js',
 '@angular/common': 'ng:common/bundles/common.umd.js',
 '@angular/compiler': 'ng:compiler/bundles/compiler.umd.js',
 '@angular/platform-browser': 'ng:platform-
 browser/bundles/platform-browser.umd.js',
 '@angular/platform-browser-dynamic': 'ng:platform-browser-
 dynamic/bundles/platform-browser-dynamic.umd.js',
 'rxjs': 'node_modules/rxjs'
 },
 packages: {
 src: {
 main: 'app',
 defaultExtension: 'js'
 },
 rxjs: { defaultExtension: 'js' }
 }
 });

 System.import('src').catch(function (err) {
 console.error(err);
 });
 </script>
</head>
<body>
<hello-world-app>Loading...</hello-world-app>
</body>
</html>

There is a lot going on in the index.html; let us understand it step by step.

SystemJS
We included SystemJS and its configuration, so what is SystemJS? SystemJS is a universal
dynamic module loader. It can load ES2015, AMD, CommonJS modules, and global scripts
in the browser and Node.js.

Getting Started

[24]

<script src="node_modules/systemjs/dist/system.src.js"></script>

<script>
System.config({});
System.import('src');
</script>

Why do we need SystemJS? If we refer back to our previous steps, we imported NgModule,
Component from the @angular/core module, BrowserModule from the
@angular/platform-browser module, the platformBrowserDynamic function from the
@angular/platform-browser-dynamic module. The @angular/core module is a
physical JavaScript file available in our application root at the
node_modules/@angular/core/bundles/core.umd.js path.

Normally, in order to use anything (variables, functions, objects, and so on) in an external
JavaScript file, we need to add it to our HTML using the <script> tag. Instead of using the
traditional <script> tag to load our JavaScript files, which is slow and synchronous, we
can use the ES2015 modules feature to load our JavaScript files dynamically,
asynchronously, and on demand. Module loading can be done using SystemJS, and instead
of SystemJS, we can also use other alternatives such as webpack and rollup.

We need to tell the SystemJS how to load modules using its configuration. In SystemJS
configuration, map object tells where to look for JavaScript files, packages object tells how
to load when no filename is specified and no file extension is specified.

After the configuration, we need inform one more thing to SystemJS that is our main file,
which system loads it first and start the execution. This is done using the
System.import() method.

In our code, we specified System.import('src'). SystemJS looks for the src folder in
configuration; we specified the app.js file is the main file for it. SystemJS will load the
app.js file under src and start the execution. Currently, we have only one JavaScript file
with all the logic in our application, app.js.

Using the Angular component
In the body tag section, we are using the <hello-world-app> tag, which we declared in
our HelloWorldAppComponent, and it will render its view:

<body>
 <hello-world-app>Loading...</hello-world-app>
</body>

www.ebook3000.com

http://www.ebook3000.org

Getting Started

[25]

Understanding npm packages
Let us refer to Step 3; in the package.json file dependencies section, we have a lot of
packages. We downloaded them, and some of them are loaded using the <script> tag,
while some of them are loaded using SystemJS. Some of these packages are part of the
Angular framework; some are third-party libraries.

The following are the Angular packages:

@angular/core: This package contains critical runtime parts of the angular
framework required by every application. It includes all metadata decorators,
dependency injection, NgModule, Component, directive, the component life cycle
hooks, core providers, links to change detection and Observables.
@angular/common: This package contains common directives (ngClass, ngFor,
ngIf, ngPlural, ngPluralCase, ngStyle, ngSwitch, ngSwitchCase,
ngSwitchDefault, and ngTemplateOutlet), pipes (AsyncPipe, DatePipe,
I18nPluralPipe, I18nSelectPipe, JsonPipe, LowerCasePipe,
CurrencyPipe, DecimalPipe, PercentPipe, SlicePipe, and
UpperCasePipe), and services.
@angular/compiler: This package contains logic for the Angular template
compiler.
@angular/platform-browser: This package contains everything related to
DOM and browser.
@angular/platform-browser-dynamic: This package contains everything
related to bootstrapping our applications during development.

The following are the dependencies:

rxjs: This is a reactive extensions library for JavaScript based on Observables,
which are used by Angular. JavaScript native does not support them, and there is
a proposal for adding them as core language in future versions. However, we
need to include RxJS and its mandatory dependency. We are loading it using the
SystemJS configuration.
zone.js: This library contains all the logic for change detection; there is a
proposal for adding them as core language. However, we need to include
zone.js and its mandatory dependency. We load it using the <script> tag.

@angular/core package is dependent on rxjs, zone.js.

Getting Started

[26]

core-js: It is a polyfill for ECMAScript 2015 and the upcoming JavaScript
language features. We need this for Angular to work in older IE browsers where
ever it is supported, we load it using the <script> tag.

Step 9
Our application is ready, but we wrote our code in TypeScript; it has to be compiled into
JavaScript. Once this is done, we need the web server to run our application.

Once again, if we refer to package.json in Step 3 in the devDependencies section, we
specified the typescript, lite-server, and concurrently packages. These are
downloaded during the npm install execution.

The typescript package contains its compiler; lite-server package is lightweight node-
based web server and concurrently package let us run multiple commands concurrently.
Now if we check out scripts section, there are three commands:

 "scripts": {
 "prestart": "npm run build",
 "start": "concurrently \"tsc -w\" \"lite-server\"",
 "build": "tsc"
 }

The build command is invoking the TypeScript compiler using the tsc command. The
start command is invoking the TypeScript compiler in watch mode, also simultaneously
it's running the lite-sever command, which will launch web server. The prestart
command is invoked automatically before the start command, and we are simply
invoking the build command in it.

We can invoke these commands in the scripts section using npm run <command>; npm
predefined commands can run using npm <command>.

Step 10
Finally let's run our first Angular application, run the following command at the root folder
of our application:

$ npm start

www.ebook3000.com

http://www.ebook3000.org

Getting Started

[27]

The preceding command will compile our TypeScript code and launch the web server. The
web server will start our application and launch the default browser and will display the
Say Hello to Angular message in the browser.

So, what happened? Here are the following steps happened in between once web server
launched, we saw the output in the browser.

As soon as a web server loads the index.html page, the browser loads the files specified in
scripts tags. Once browser loads the SystemJS, it read its configuration and loads the
app.js file (which is compiled from app.ts file). In the app.js file, @angular/core,
@angular/platform-browser, @angular/platform-browser-dynamic modules are
loaded; they will load their dependent modules.

The platformBrowserDynamic() function bootstraps our HelloWorldAppModule, while
bootstrapping HelloWorldAppModule, it will add the HelloWorldAppComponent in the
bootstrap property to its entryComponents.

Once the HelloWorldAppComponent is added to entryComponents, Angular will compile
it and create a ComponentFactory instance and store it in the
ComponentFactoryResolver instance.

Finally, the <hello-world-app> tag in index.html will render the template of
HelloWorldAppComponent output.

ES2015 features will be explained whenever they are used in the code.

Getting Started

[28]

Using Angular CLI
In the previous section Writing your first Angular application, we learned how to write a hello
world application from scratch. To write a simple hello world application, we
initially had to create a lot of files with boilerplate code and project configuration. This
process is common for both small and large applications.

For large applications, we create a lot of modules, components, services, directives, and
pipes with boilerplate code and project configuration. This is a very time-consuming
process. Since we want to save time and be productive by focusing on solving business
problems instead of spending time on tedious tasks, tooling comes in handy.

The Angular team created a command-line tool know as Angular CLI. The Angular CLI
helps us in generating Angular projects with required configurations, boilerplate code, and
also downloads the required node packages with one simple command. It also provides
commands for generating components, directives, pipes, services, classes, guards,
interfaces, enums, modules, modules with routing and building, running and testing the
applications locally.

Getting started with Angular CLI
The Angular CLI is available as a node package. First, we need to download and install it
with the following command:

$ npm install -g @angular/cli

The preceding command will install Angular CLI, we can then access it anywhere via
command line or Terminal. To generate the Angular project using CLI we can use the ng
new project-name command.

$ ng new first-ng-cli-project

This command creates a folder named first-ng-cli-project, generates Angular project
under it with all the required files and downloads all the node packages. To run the
application, we need to navigate to the project folder and run the ng serve command:

$ cd first-ng-cli-project
$ ng serve

www.ebook3000.com

http://www.ebook3000.org

Getting Started

[29]

The ng serve command compiles and builds the project, and starts the local web server at
http://localhost:4200 URL. When we navigate to http://localhost:4200 URL in
the browser, we see the following output:

The output is very simple but we generated the entire project, and got it up and running
with two simple commands. Here are some more commands to generate different types of
files using Angular CLI.

Component ng g component my-new-component

Directive ng g directive my-new-directive

Pipe ng g pipe my-new-pipe

Service ng g service my-new-service

Module ng g module my-module

Module with routing ng g module my-module --routing

To learn more about Angular CLI visit h t t p s ://c l i . a n g u l a r . i o .

https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io

Getting Started

[30]

Summary
We started this chapter with an introduction to Angular, and some of its new features.
Then, we discussed few tools that will help us during our application development. Next,
we looked at different language choices available to build Angular applications and
also learned TypeScript and its importance. We learned how to set up Angular for
development and wrote our first Angular application. Finally we looked at Angular CLI
and how it accelerates the project development.

In the next chapter, we will learn how to write components, new directives and new
templating syntax in Angular.

www.ebook3000.com

http://www.ebook3000.org

2
Basics of Components

In this chapter, we will learn how to use new features of the Angular framework, line data
binding, event binding, and built-in directives to build components. After going through
this chapter, the reader will understand the following concepts:

How to write components in Angular
Data binding in Angular
Templating syntax in Angular
Built-in directives in Angular

Getting started
Angular has been completely re-written from scratch, so there are a lot of new concepts. In
this chapter, we will discuss some of the important features like data binding, new
templating syntax, and built-in directives. We are going to use a more practical approach
for learning these new features.

Project setup
Here is a sample application with the required configuration for Angular and sample code.
Create the directory structure and files as mentioned here:

interpolation-syntax

├─ index.html
├─ package.json
├─ src
│ ├─ app.component.ts

Basics of Components

[32]

│ ├─ app.module.ts
│ └─ main.ts
├─ systemjs-angular-loader.js
├─ systemjs.config.js
└─ tsconfig.json

We can use the same code for tsconfig.json and package.json files from Chapter 1,
Getting Started, just change the name property to interpolation-syntax in the
package.json file.

In the Chapter 1, Getting Started, Hello World example, we have all our code only in one file.
However, once our application starts growing, maintainability becomes a problem, so we
are going to split the code into three files:

src/main.ts: It contains all the bootstrapping logic, as follows:

 import { platformBrowserDynamic } from
 '@angular/platform-browser-dynamic';
 import { AppModule } from './app.module';

 platformBrowserDynamic().bootstrapModule(AppModule);

src/app.module.ts : This will have application module logic:

 import { NgModule } from '@angular/core';
 import { BrowserModule } from '@angular/platform-browser';

 import { AppComponent } from './app.component';

 @NgModule({
 imports: [BrowserModule],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
 })
 export class AppModule {}

src/app.component.ts: It contains actual application component logic:

 import { Component } from '@angular/core';

 @Component({
 selector: 'display-data-app',
 template: '<h1>Data Binding in Angular -
 Interpolation Syntax</h1>'
 })
 export class AppComponent {}

www.ebook3000.com

http://www.ebook3000.org

Basics of Components

[33]

The code for index.html is as follows:

<html>
<head>
 <title>Data Binding in Angular - Interpolation Syntax</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">

 <script src="node_modules/core-js/client/shim.js"></script>
 <script src="node_modules/zone.js/dist/zone.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>

 <script src="systemjs.config.js"></script>
 <script>
 System.import('src').catch(function (err) {
 console.error(err);
 });
 </script>
</head>
<body>
<display-data-app>Loading...</display-data-app>
</body>
</html>

We moved our SystemJS configuration code to a separate file (systemjs.config.js) from
index.html.

The code for systemjs.config.js is as follows:

(function (global) {
 System.config({
 paths: {
 'ng:': 'node_modules/@angular/'
 },
 map: {
 '@angular/core': 'ng:core/bundles/core.umd.js',
 '@angular/common': 'ng:common/bundles/common.umd.js',
 '@angular/compiler': 'ng:compiler/bundles/compiler.umd.js',
 '@angular/platform-browser': 'ng:platform-
 browser/bundles/platform-browser.umd.js',
 '@angular/platform-browser-dynamic': 'ng:platform-browser-
 dynamic/bundles/platform-browser-dynamic.umd.js',
 'rxjs': 'node_modules/rxjs'
 },
 packages: {
 src: {

Basics of Components

[34]

 main: 'main',
 defaultExtension: 'js',
 meta: {
 './*.js': {
 loader: 'systemjs-angular-loader.js'
 }
 }
 },
 rxjs: {
 defaultExtension: 'js'
 }
 }
 });
})(this);

The systemjs-angular-loader.js file contains logic for loading the template and CSS
files with relative paths in the component. We can copy this from the provided source code.

We have our application ready, so now run the npm install command. Once it is finished,
run the npm start command. This launches our application in the browser. Up till now,
what we have created is no different from the Hello World application in Chapter 1, Getting
Started, except for the display message:

Working with data
In a web application, we need to display data on an HTML page and read the data from
input controls on an HTML page. In Angular, everything is a component; the HTML page is
represented as a template, and it is always associated with a Component class. Application
data lives on the component's class properties.

www.ebook3000.com

http://www.ebook3000.org

Basics of Components

[35]

Either we push values to the template or pull values from the template. To do this we
need to bind the properties of the Component class to the controls on the template. This
mechanism is known as data binding. Data binding in Angular allows us to use simpler
syntax to push or pull data.

Displaying data
In this section, we are going to look at the different syntaxes provided by Angular to
display data.

Interpolation syntax
If we remember our AppComponent class from the preceding example, we are displaying a
message statically in HTML inside the template. Let us learn how to show the same
message stored in a class property.

Here is the revised code for the AppComponent class in the src/app.component.ts file:

import { Component } from '@angular/core';

@Component({
 selector: 'display-data-app',
 template: '<h1>{{message}}</h1>'
})
export class AppComponent {
message: string = 'Data Binding in Angular
 - Interpolation Syntax';
}

Once we have the preceding code snippet, the browser will automatically refresh with the
latest output, so we do not need to reload the browser manually. This happens because we
are running our TypeScript compiler in watch mode, it will automatically compile any
modified TypeScript files to JavaScript files.

We are also using a lite-server as our web server, and this will automatically refresh the
browser if any of the files under the application change. We can continuously modify the
code and view the output without reloading the browser.

In the Component() function, we updated the template property with an expression
{{message}} surrounded by an h1 tag.

The double curly braces are the interpolation syntax in Angular.

Basics of Components

[36]

For any property on the class that we need to display on the template, we can use the
property name surrounded by double curly braces. Angular will automatically render the
value of the property in the browser.

Let's further extend our example, and bind the message property to a text box. Here is the
revised template:

template: `
 <h1>{{message}}</h1>
 <input type="text" value="{{message}}"/>
`

Notice that the preceding template is a multiline string, and it is surrounded by `
(backtick) symbols instead of single or double quotes.

`` (backtick) symbols are the new multiline string syntax in ECMAScript
2015.

Now the text box is also displaying the same value in the message property. Let's change
the value in the text box by typing something, then hit the Tab button. We do not see any
changes happening in the browser.

Whenever we modify the value of any control on the template, which is bound to a
property of a Component class, it should update the property value. Any other controls
bound to the same property should also display the updated value on the template.

In the browser, the <h1> tag should also show the same text whatever we type in the text
box, but this will not happen.

www.ebook3000.com

http://www.ebook3000.org

Basics of Components

[37]

Interpolation syntax is one-way data binding, and data flows from the data source
(Component class) to view (template).

Only the value of the property is updated on the template, it will not happen vice-versa,
that is, changes made to controls on the template will not update the property value.

Property binding
Create an example property-binding from the previous example. Just change the name
property to property-binding in the package.json. Then run the npm install
command followed by the npm start command. Create the directory structure and files as
mentioned here:

property-binding
├─ index.html
├─ package.json
├─ src
│ ├─ app.component.ts
│ ├─ app.module.ts
│ └─ main.ts
├─ systemjs-angular-loader.js
├─ systemjs.config.js
└─ tsconfig.json

Property binding is another form of data binding syntax in Angular.

<element-name [element-property-name] = "component-property-name">

Property binding syntax:

element-name: This can be any HTML tag, or custom tag
element-property-name: Specifies the property of the corresponding DOM
element for the HTML tag or custom tag property name surrounded by square
brackets
component-property-name: Specifies the property of the component class or
expression

Here is an example of property binding in Angular:

In the preceding code snippet, we are binding the headerImage property of the Component
class to the src attribute of the tag.

Basics of Components

[38]

An important point to remember is that unlike AngularJS 1, Angular does not bind values
to attributes of HTML elements. Instead, it will bind to properties of corresponding DOM
(Document Object Model) elements.

In the preceding code snippet for the HTML tag, HTMLImageElement is the
corresponding interface in DOM. For most of the HTML element's attributes, there will be
one to one mapping with its corresponding DOM interface properties, but there are
exceptions. Property binding works with only properties, not attributes.

Let us update our template in the property-binding example to use property binding:

template: `
 <h1 [textContent]="message"></h1>
 <input type="text" [value]="message"/>

Instead of using interpolation syntax, we are wrapping the textContent property of the
<h1> tag and value property input tag in square braces, and on the right side of this
expression, we are assigning the Component class properties. The output will be the same
as when we are using interpolation syntax.

Property binding syntax is also one-way data binding, data flows from
data source (Component class) to view (template).

For the property binding syntax and interpolation syntax, we can use them interchangeably;
there are no differences other than syntax. We can use whichever syntax is more idiomatic
for a given situation.

Instead of using square brackets notation for property binding, we can also use its canonical
form property name prefixed with bind-:

<h1 bind-textContent ="message"></h1>

Attribute binding
Angular always uses properties to bind the data. But if there is no corresponding property
for the attribute of an element, Angular will bind data to attributes. Attribute binding
syntax starts with the keyword attr followed by the name of the attribute and then assigns
it to the property of the Component class or an expression:

<td [attr.colspan]="colSpanValue"></td>

www.ebook3000.com

http://www.ebook3000.org

Basics of Components

[39]

Event binding
Using event binding syntax, we can bind built-in HTML element events, such as click,
change, blur, and so on, to Component class methods. We can also bind custom events on
components or directives, which we will discuss in the chapters that follow.

Event binding syntax uses parenthesis symbols (). We need to surround the event property
name with parenthesis symbols () on the left side of the expression, on the right side we
will specify one of the Component methods which will be invoked when the event is
triggered.

Create another example event-binding from the previous example. Change the name
property to event-binding in the package.json file. Then run the npm install
command followed by the npm start command.

The code for the revised AppComponent class is as follows:

export class AppComponent {
 public message: string = 'Angular - Event Binding';

 showMessage() {
 alert("You pressed a key on keyboard!");
 }
}

We have added a method named showMessage() to the AppComponent class, this method
will be invoked whenever we type a key in the text box.

The code for the revised template on AppComponent is as follows:

template: `
 <h1>{{message}}</h1>
 <input type="text" [value]="message"
 (keypress)="showMessage()"/>
`

We have added a keypress event surrounded by parenthesis symbols on the text box to
bind with the showMessage() method in the AppComponent class. Let's update our
example to be a little bit more realistic, instead of displaying the same alert() dialog
every time we display the keys we are typing:

Basics of Components

[40]

The code for src/app.component.ts is as follows:

import { Component } from '@angular/core';

@Component({
 selector: 'event-binding-app',
 template: `
 <p>{{message}}</p>
 <input type="text" (keypress)="showMessage($event)"/>
 `
})
export class AppComponent {
 public message: string = 'Angular - Event Binding';

 showMessage(onKeyPressEvent) {
 this.message = onKeyPressEvent.target.value;
 }
}

Here are the important things to notice in our code:

To the showMessage method, we are passing a special Angular $event object
$event keyword represents the current DOM event object
On the AppComponent class showMessage method, we are accepting $event
passed from template into the onKeyPressEvent method parameter
Every DOM event object has a target property, which represents the DOM
element on which the current event is raised
We are using the onKeyPressEvent.target object, which represents the text
box
We are using the onKeyPressEvent.target.value property to access to the
text box value
We are assigning the value of the text box to the message property

As a result of the preceding code, whatever input we enter in the text box will appear in the
<p> tag output because it is also bound to the message property, we are updating the
message property value whenever we type something into the text box.

Event binding syntax is also one-way data binding, but the data flows
from view (template) to the Component class.

www.ebook3000.com

http://www.ebook3000.org

Basics of Components

[41]

Instead of using () symbols notation for event binding, we can also use its canonical form
event name prefixed with on-:

<input type="text" on-keypress="showMessage($event)"/>

We will discuss event binding again in future chapters.

Two-way data binding
We require the data to flow in both directions, from Component to template and vice-
versa. The most classic example is forms. We need to display the properties' values on
views, and when the user updates the values on views, we need them to be updated back to
properties.

Two-way data binding syntax is the combination of both property binding and event
binding along with the ngModel built-in directive. We need to surround the ngModel
directive with both parenthesis and square brackets [(ngModel)]:

[(ngModel)] = "component-property"

Create another example two-way-binding from the previous example. Change the name
property to two-way-binding in the package.json file.

We need to do a few more things for two-way data binding to work, and we require the
@angular/forms package; the ngModel directive is available in it. Run the following
command at the root of the project to install the @angular/forms package:

$ npm install @angular/forms --save

The preceding command will download the @angular/forms package and also add the
entry in the dependencies section in the package.json file. Then add the following line to
the systemjs.config.js map object, so that SystemJS will load the forms module:

'@angular/forms': ng:forms/bundles/forms.umd.js'

Include the FormsModule to the imports arrays, our AppModule is dependent on the
forms module:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

Basics of Components

[42]

@NgModule({
 imports: [BrowserModule, FormsModule],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule {}

Now we have everything ready for us to use ngModel, let us run the npm install
command followed by the npm start command.

The codes for src/app.component.ts are as follows:

import { Component } from '@angular/core';

@Component({
 selector: 'two-way-binding-app',
 template: `
 <p>{{message}}</p>
 <input type="text" [(ngModel)]="message" />
 `
})
export class AppComponent {
 public message: string = 'Angular - Two Way Binding';
}

In the preceding code snippet, message property is assigned to [(ngModel)], if we change
the text in the text box, the message property will be updated automatically without any
extra lines of code and vice versa. This also updates the text inside the <p> tag.

Built-in directives
The AngularJS 1 framework has a lot of built-in directives. Angular comes with very few
directives, the remaining directives in AngularJS 1 are replaced with new concepts of
Angular which we discussed in previous sections. In this section, we will discuss the built-
in directives available in Angular.

Structural directives
The structural directives allow us to change the DOM structure in a view by adding or
removing elements. In this section, we will explore built-in structural directives, ngIf,
ngFor, and ngSwitch.

www.ebook3000.com

http://www.ebook3000.org

Basics of Components

[43]

ngIf
The ngIf directive is used for adding or removing elements from DOM dynamically:

<element *ngIf="condition"> content </element>

If the condition is true, Angular will add content to DOM, if the condition is false it will
physically remove that content from DOM:

<div *ngIf="isReady">
 <h1>Structural Directives</h1>
 <p>They lets us modify DOM structure</p>
</div>

In the preceding code snippet, when isReady value is true, the content inside the <div>
tag will be rendered on the page, whenever it is false, both tags inside the <div> tag will be
completely removed from DOM. The asterisk (*) symbol before ngIf is a must.

ngFor
The ngFor is a repeater directive, it's used for displaying a list of items. We use ngFor
mostly with arrays in JavaScript, but it will work with any iterable object in JavaScript. The
ngFor directive is similar to the for...in statement in JavaScript.

Here is a quick example:

public frameworks: string[] = ['Angular', 'React', 'Ember'];

The framework is an array of frontend framework names. Here is how we can display all of
them using ngFor:

 <li *ngFor="let framework of frameworks">
 {{framework}}

The preceding code snippet will display the list of framework names in an unordered list.

Understanding ngFor syntax
<li *ngFor="let framework of frameworks">
 {{framework}}

Basics of Components

[44]

The preceding code uses ngFor to display the list of framework names. Let us understand
each part of the ngFor syntax:

*ngFor="let framework of frameworks"

There are multiple segments in the ngFor syntax, which are *ngFor, let framework, and
frameworks. We will now see them in detail:

frameworks: This is a array and data source for the ngFor directive on which it
will iterate.
let framework: let is a keyword used for declaring the template input
variable. The template input variable represents a single item in the list during
iteration. We can use a framework variable inside an ngFor template to refer to
the current item of iteration.
ngFor: ngFor represents the directive itself, the asterisk () symbol before
ngFor is a must.

ngSwitch
The ngSwitch directive behaves similarly to a switch case statement in JavaScript.
ngSwitch will have multiple templates, depending on the value passed, it will render one
template. This directive is similar to the switch() statement in JavaScript:

<div [ngSwitch]="selectedCar">
 <template [ngSwitchCase]="'Bugatti'">I am Bugatti</template>
 <template [ngSwitchCase]="'Mustang'">I am Mustang</template>
 <template [ngSwitchCase]="'Ferrari'">I am Ferrari</template>
 <template ngSwitchDefault>I am somebody else</template>
</div>

We are using property binding syntax with [ngSwitch]. In the preceding code snippet,
when the selectedCar property value matches the [ngSwitchCase] value, Angular will
render that template content physically, the remaining templates won't be on the screen. If
none of the [ngSwitchCase] values match, Angular will render the ngSwitchDefault
template.

www.ebook3000.com

http://www.ebook3000.org

Basics of Components

[45]

We are not using the asterisk (*) symbol for NgSwitch because we are
directly using the HTML 5 template tag. ngIf and ngFor also use an
HTML 5 template tag internally for rendering content, instead of
explicitly writing the template tag every time. Unlike ngSwitch, we use
the asterisk (*) symbol as a shortcut or syntactic sugar. Angular will
internally replace the asterisk (*) symbol with the HTML 5 template tag.

Attribute directives
The attribute directives allow us to change the appearance or behavior of an element. In this
section, we will explore the built-in attribute directives, ngStyle, and ngClass.

ngStyle
The ngStyle directive is used when we need to apply multiple inline styles dynamically to
an element.

In the template:

<p [ngStyle]="getInlineStyles(framework)">{{framework}}</p>

In the Component class:

getInlineStyles(framework) {
 let styles = {
 'color': framework.length > 3 ? 'red' : 'green',
 'text-decoration': framework.length > 3 ? 'underline' : 'none'
 };
 return styles;
}

Instead of writing lengthy statements at [ngStyle] in the template, we are calling a
method inside the Component class, which returns multiple inline styles.

If we need to apply a single inline style dynamically, we can use style binding using the
following syntax, [style.style-property] instead of the ngStyle directive:

<p [style.color]="framework.length > 3 ? 'red': 'green'" >
 {{framework}}
</p>

Basics of Components

[46]

The let is a new keyword part of ES2015, which will allow us to declare a
block level scope local variable. Before ES2015 there is no block level scope
in JavaScript.

ngClass
The ngClass directive is used when we need to apply multiple classes dynamically.

The code for Styles is as follows:

.red {
 color: red;
 text-decoration: underline;
}

.bolder {
 font-weight: bold;
}

In the Component class:

geClasses(framework) {
 let classes = {
 red: framework.length > 3,
 bolder: framework.length > 4
 };
 return classes;
}

In the template:

<p [ngClass]="geClasses(framework)">{{framework}}</p>

Whichever classes are true, they will be applied to the template. If we need to apply a single
class dynamically, we can use class binding using the following syntax; [class.class-
name]instead of the ngClass directive:

<p [class.red]="isThisRed">{{framework}}</p>

www.ebook3000.com

http://www.ebook3000.org

Basics of Components

[47]

Building the master-detail component
We have learned a lot of new things in Angular, such as data binding, event binding,
structural directives, and attribute directives in this chapter. Let's put them into action by
building a master-detail page application.

Let us begin by creating another example from the previous section and naming it master-
details. Change the name property to master-details in the package.json file. We do
not need the forms package in this example. Finally, run the npm install command
followed by the npm start command.

The code for index.html is as follows:

<html>
<head>
 <title>Books List</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">

 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/
 4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
 <link href="https://fonts.googleapis.com/css?family=Roboto:
 400,500" rel="stylesheet">
 <link rel="stylesheet" href="styles.css"/>

 <script src="node_modules/core-js/client/shim.js"></script>
 <script src="node_modules/zone.js/dist/zone.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>

 <script src="systemjs.config.js"></script>
 <script>
 System.import('src').catch(function (err) {
 console.error(err);
 });
 </script>
</head>
<body>
 <books-list>Loading...</books-list>
</body>
</html>

Basics of Components

[48]

We added three additional items to index.html:

Bootstrap: CSS frameworks from CDN (we can use any CSS)
Roboto font: We can use any font we like
Custom style sheet: Where we write our application styles

Code for styles.css
The code for stylesheet (styles.css) is very long. The reader can add it
from the provided source code.

The code for src/app.module.ts is as follows:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

@NgModule({
 imports: [BrowserModule],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule {
}

The code for src/app.component.ts is as follows:

import { Component } from '@angular/core';

@Component({
 selector: 'books-list',
 templateUrl: ./app.component.html'
})
export class AppComponent {
}

There is one new thing in our AppComponent, that is, templateUrl. Instead of using an
inline template, we are using the template stored in an HTML file.

The code for src/app.component.html is as follows:

<h3 class="title">Books List</h3>
<div class="border-divider"></div>
<div class="row">
 <div class="col-xs-3">Left</div>

www.ebook3000.com

http://www.ebook3000.org

Basics of Components

[49]

 <div class="col-xs-9">Right</div>
</div>

We created a basic layout structure using bootstrap in the preceding HTML file. Let us
write some code in this example. We are going to display basic book information on the left-
hand side of the page. The user will be able to click on any of the book items and pull
information about that book, and the information gets displayed on the right-hand side of
the page.

The next step is to add the Book class to our example to define the structure of it.

The code for src/book.ts is as follows:

export class Book {
 isbn: number;
 title: string;
 authors: string;
 published: string;
 description: string;
 coverImage: string;
}

Also, let us add some sample data. Normally, this data comes from REST services in real-
world applications, we will learn how to consume and use them in future chapters. But for
this example, we are going to use dummy data inside a class.

The code for src/mock-books.ts is as follows:

import { Book } from './book';

export const BOOKS: Book[] = [
 {
 isbn: 9781786462084,
 title: 'Laravel 5.x Cookbook',
 authors: 'Alfred Nutile',
 published: 'September 2016',
 description: 'A recipe-based book to help you efficiently
 create amazing PHP-based applications with Laravel 5.x',
 coverImage: 'https://d255esdrn735hr.cloudfront.net/sites/
 default/files/imagecache/ppv4_main_book_cover/
 B05517_MockupCover_Cookbook_0.jpg'
 },
 {
 isbn: 9781784396527,
 title: 'Sitecore Cookbook for Developers',
 authors: 'Yogesh Patel',
 published: 'April 2016',

Basics of Components

[50]

 description: 'Over 70 incredibly effective and practical
 recipes to get you up and running with Sitecore development',
 coverImage: 'https://d255esdrn735hr.cloudfront.net/sites/'
 default/files/imagecache/ppv4_main_book_cover/6527cov_.jpg'
 },
 {
 isbn: 9781783286935,
 title: 'Sass and Compass Designers Cookbook',
 authors: 'Bass Jobsen',
 published: 'April 2016',
 description: 'Over 120 practical and easy-to-understand
 recipes that explain how to use Sass and Compass to write
 efficient, maintainable, and reusable CSS code for your web
 development projects',
 coverImage: 'https://d1ldz4te4covpm.cloudfront.net/sites/
 default/files/imagecache/ppv4_main_book_cover/I6935.jpg'
 }
];

The code for src/app.component.ts is as follows:

import { Component } from '@angular/core';
import { Book } from './book';
import { BOOKS } from './mock-books';
n
@Component({
 selector: 'books-list',
 templateUrl: 'src/app.component.html'
})
export class AppComponent {
 booksList: Book[] = BOOKS;
}

We are storing all the mock-books data inside the books-list property of the
AppComponent class. As we know, any public property of the Component class is accessed
inside the template, so we will use *ngFor to display this list inside the template
(app.component.html):

<ul class="list">
<li class="list-item" *ngFor="let book of booksList">
 <div class="cover-image-container">

 </div>
 <div class="clear">
 <h3 class="book-title">{{book.title}}</h3>
 <h4 class="book-author">{{book.authors}}</h4>

www.ebook3000.com

http://www.ebook3000.org

Basics of Components

[51]

 </div>

The preceding code snippet needs to be added in the place of text which stays left. Here we
are using *ngFor for iterating over the booksList. Using the template input variable
book interpolation syntax, we are displaying the image, book title, and authors of the book.
This is how our example looks in a browser at this stage:

Now, whenever we click on any one of the list items, on the right side should be displayed
the full details of the book. We need to add a click event to each list item, associate it with
a method in Component class, and set the selectedBook details in the property using that
method so that we can use the selectedBook property to display the full details of the
book on the right side of the template.

Now add the click event to each list item:

<li class="list-item" *ngFor="let book of booksList"
 (click)="getBookDetails(book.isbn)">

Add the getBookDetails() method and property to store the selected book. To the
getBookDetails method, we are passing a book's ISBN, using which we can filter the
details of the book from booksList:

export class AppComponent {
 booksList: Book[] = BOOKS;
 selectedBook: Book;

 getBookDetails (isbn: number) {
 var selectedBook = this.booksList
.filter(book => book.isbn === isbn);
 this.selectedBook = selectedBook[0];

Basics of Components

[52]

 }
}

We are storing our selected book information in the selectedBook property of the
Component class, and we can use the same property in the template to display the details:

<div class="col-xs-9">
 <div class="row selected-book">
 <div class="col-xs-2">

 </div>
 <div class="col-xs-8">
 <h3 class="title">{{selectedBook.title}}</h3>
 <p>{{selectedBook.authors}}</p>
 <p>{{selectedBook.published}}</p>
 <p>{{selectedBook.description}}</p>
 </div>
 </div>
</div>

By now, our application is almost complete. If we go and click on any of the list items, on
the right side it will display the full details of the book:

We are all good, except there is one problem: whenever the application is loaded, we do not
have a selected book. If we go to developer tools on the Console tab in the browser, we will
see a bunch of errors; this is happening because we are trying to display the selected book's
information whose value is undefined. We should render the template only when there is a
value in the selectedBook property, which we can simply check by adding a *ngIf
directive to check the value of the selectedBook property:

<div *ngIf="selectedBook" class="row selected-book">

www.ebook3000.com

http://www.ebook3000.org

Basics of Components

[53]

Now, we don't see any errors because the *ngIf directive checks for the value of the
selectedBook property. If it is not initialized with book details, it won't even render the
content inside of it. The template code will not try to access the value of the selectedBook
property because the code won't even exist. With this, we will end this chapter here.

Summary
We started this chapter by covering an introduction to components. Next, we discussed
how to write components using new features in Angular, such as data binding (one-way,
two-way), event binding, and new templating syntaxes using many examples. Then we
discussed different kinds of built-in directives in Angular. Finally, we completed this
chapter by building a master-detail application using all those features we learned
throughout this chapter.

By the end of this chapter, the reader should have a good understanding of Angular's new
concepts and should be able to write components. In the next chapter, we will discuss
components, services, and dependency injection in more depth.

3
Components, Services, and

Dependency Injection
In this chapter, we will learn how to implement some real-world application scenarios. We
are going to look at how to implement multiple components in the master-detail page, how
the components communicate with each other, how to share the data between these
components using services, and how dependency injection works. After going through this
chapter, the reader will understand the following concepts:

Creating and using multiple components
Communication between the components
Using services to share the data
How dependency injection work

Introduction
In the previous chapter, we learned how to build a book list application, which is a
master-detail page. It contains just one component and becomes complex; these
components need to communicate with each other.

Let us begin by creating another application from the last example in the previous chapter,
name it multiple-components, also change the name property to multiple-
components in the package.json file.

www.ebook3000.com

http://www.ebook3000.org

Components, Services, and Dependency Injection

[55]

Now run the npm install command; this will download all the required packages. Once it
has finished, run the npm start command. We will see the following output in the
browser:

Our application has a single component named AppComponent, and its template code is in
the app.component.html file. A single component is doing too many things in our
application. In the future, we might need to display book information in other components.
If we have to write the same piece of code again by duplicating, we will violate the DRY
(Don't Repeat Yourself) principle. The component should be an atomic, a reusable UI
building block, and it should be as small as possible, and reusable.

Working with multiple components
The real-world applications will be complex, and they will have multiple components. We
are going to rewrite our application to use multiple components and understand how these
components communicate with each other.

If we look at our template code in the app.component.html file, we have some pieces of
code at the bottom, inside <div class="col-xs-9"></div> tags, which displays the
selected book information. We need to refactor this code into a separate component
(BookDetailsComponent) so that it is reusable in multiple places as needed.

Let us create a folder, book-details under the src folder, then create a file, book-
details.component.ts under the book-details folder. We are going write all the code
inside <div class="col-xs-9"></div> tags in the template
of BookDetailsComponent.

Components, Services, and Dependency Injection

[56]

The code for src/book-details/book-details.component.ts is:

import { Component } from '@angular/core';
import { Book } from '../book';

@Component({
 selector: 'book-details',
 templateUrl: './book-details.component.html'
})
export class BookDetailsComponent {
 book: Book;
}

The code for src/book-details/book-details.component.html is as follows:

<div *ngIf="book">
 <div class="row selected-book">
 <div class="col-xs-2">

 </div>
 <div class="col-xs-8">
 <h3 class="title">{{book.title}}</h3>
 <p>{{book.authors}}</p>
 <p>{{book.published}}</p>
 <p>{{book.description}}</p>
 </div>
 </div>
 <div class="row">
 <div class="col-xs-10">
 <button class="btn btn-danger float-xs-right mt-1">
 Delete
 </button>
 </div>
 </div>
</div>

We have our new book-details component. There are a couple of things to notice; we are
using the book as a property name in the Component class instead of selectedBook, the
template also uses the same property name. We also added a Delete button to the template
code which does nothing for now.

Our refactored component can display the given book information. To do that we can use
the book-details selector declaratively anywhere:

<book-details></book-details>

www.ebook3000.com

http://www.ebook3000.org

Components, Services, and Dependency Injection

[57]

To use this BookDetailsComponent, first we need to add it to the declarations array in
our app module:

import { BookDetailsComponent } from
 './book-details/book-details.component';

declarations: [AppComponent, BookDetailsComponent]

It is time to use the BookDetailsComponent inside the template of AppComponent. Here is
the app.component.html code using BookDetailsComponent declaratively, using its
selector, <book-details> inside <div class="col-xs-9"></div> tags.

The code for src/app.component.html is as follows:

<div class="col-xs-9">
 <book-details></book-details>
</div>

The <book-details></book-details> tag is supposed to display full book information.
To do that, the Component class needs a book object. However, the book information is in
the selectedBook property of the AppComponent class.

We need to bind the selectedBook property of the AppComponent class to the book
property of the BookDetailsComponent class using property binding on the <book-
details> tag.

Input properties
The properties on the Component class are not directly accessible for property binding on
its selector; we need to declare them as input properties for property binding to work.

We can declare a property as an input property using the @Input() decorator or by adding
the property to the inputs: [] array property on the @Component() decorator; we can
use either of these ways.

Let's declare our book property of the BookDetailsComponent class as an input property
using the @Input() decorator. It is available in the @angular/core package:

@Input() book: Book;

Components, Services, and Dependency Injection

[58]

The code for src/book-details/book-details.component.ts is as follows:

import { Component, Input } from '@angular/core';
import { Book } from '../book';

@Component({
selector: 'book-details',
 templateUrl: './book-details.component.html',
})
export class BookDetailsComponent {
 @Input() book: Book;
}

Now the book property of the BookDetailsComponent class is available for property
binding.

The code for src/app.component.html is as follows:

<div class="col-xs-9">
 <book-details [book]="selectedBook"></book-details>
</div>

After adding the preceding code snippet, if we head back to a browser, we can view the full
output. Click on the Books List on the left-hand side and we get the full book information
on the right-hand side. It works as expected.

Now, we have successfully created two components, and we are passing data from parent
component to child component. This is how components communicate with each other. The
parent component interacts with the child component by binding the selectedBook
property on the parent component to the book property on a child component.

We created a reusable BookDetailsComponent, which is a presentation component that
can be used anywhere, by passing the book information to the book property using
property binding.

In this section, we learned how the parent component communicates with a child
component. In the next section, we will learn how a child component can communicate
back to the parent component.

Aliasing input properties
If we do not want to use the original property name for input property binding, we can use
aliasing. The @Input() decorator accepts an optional alias name for the property:

@Input('myBook') book: Book;

www.ebook3000.com

http://www.ebook3000.org

Components, Services, and Dependency Injection

[59]

We aliased the book input property name with the name, myBook; now we can use myBook
as a property name on the selector instead of the property name, book:

<book-details [mybook]="selectedBook"></book-details>

Output properties
Let us add the following deleteBook() method to the AppComponent class. This method
deletes book information from booksList with a given ISBN number:

deleteBook (isbn: number) {
 this.selectedBook = null;
 this.booksList = this.booksList
 .filter(book=>book.isbn !== isbn);
}

If we revisit our BookDetailsComponent, we have a Delete button in the template. Click
on the Delete button and nothing happens because we did not wire any events to that
button. Add an empty deleteBook() method without any implementation to the
BookDetailsComponent class:

export class BookDetailsComponent {
 @Input() book: Book;

 deleteBook () {
 }
}

Add a (click) event to the Delete button in the template and wire the deleteBook()
method:

<button class="btn btn-danger float-xs-right mt-1"
 (click)="deleteBook()">Delete
</button>

Now, if we click on the Delete button we are still invoking the deleteBook() method, it
does nothing because we did not need to implement the delete functionality. In fact,
BookDetailsComponent does not know how to remove a book; it does not have any
knowledge of booksList from where it is supposed to remove the book information. It is
just a presentation component.

Components, Services, and Dependency Injection

[60]

The data source booksList and logic to delete the book information from the data source
are in our parent, AppComponent. Whenever we click on the Delete button in
BookDetailsComponent (child component), we need to communicate back to
AppComponent (parent component) to invoke the deleteBook() method on it.

We need to define an event on the BookDetailsComponent (child component) which can
trigger the deleteBook() method on the AppComponent (parent component) class. In the
BookDetailsComponent (child component), create a custom event called onDelete.

The onDelete property is an output property declared using the @Output() decorator to
make the event binding work on the selector. Custom events can be created using
the EventEmitter class. The @Output() decorator and EventEmitter class are available
in the @angular/core package.

The code for src/book-details/book-details.component.ts is as follows:

import { Component, Input, Output, EventEmitter }
 from '@angular/core';
import { Book } from '../book';

@Component({
 selector: 'book-details',
 templateUrl: './book-details.component.html'
})
export class BookDetailsComponent {

 @Input() book: Book;

 @Output() onDelete = new EventEmitter<number>();

 deleteBook() {
 }
}

Whenever the Delete button is clicked, we need to trigger an onDelete event, the
EventEmitter class provides an emit method to trigger the events. We are invoking the
deleteBook() method when we click on the Delete button. Let us trigger an onDelete
event in the deleteBook() method using the emit() method:

deleteBook () {
 this.onDelete.emit(this.book.isbn);
}

www.ebook3000.com

http://www.ebook3000.org

Components, Services, and Dependency Injection

[61]

To emit(), we are passing the current book ISBN number. Now we can use
the onDelete() event to trigger the parent AppComponent class' deleteBook() method
and pass the ISBN number. Add an onDelete event on the <book-details> selector in
the app.component.html template file:

<div class="col-xs-9">
 <book-details [book]="selectedBook"
 (onDelete)="deleteBook($event)">
 </book-details>
</div>

Now the Delete button works. Let's understand what we did step by step:

An onDelete event is declared as output property using the @Output()
decorator
The onDelete property is initialized as an instance of the EventEmitter class
EventEmitter objects are used for creating and triggering custom events
The onDelete property is an event, so we are using event binding syntax to bind
to deleteBook() method in the parent component
In the deleteBook() method of the child component, we are using the
EventEmitter object and emit() method on the onDelete property, we are
passing the current book's ISBN number as a parameter
When an onDelete event is triggered from the child, it will invoke the
deleteBook() method on AppComponent
We are passing the ISBN number using the $event object to the deleteBook()
method on AppComponent

While creating the EventEmitter object, we are using a number type
because we are passing a number via our event, we can use any type in the
component.

Aliasing output properties
If we do not want to use the original event name for event binding, we can use aliasing.
The @Ouput() decorator accepts an optional alias name for the property:

@Output('deleteMyBook') onDelete = new EventEmitter<number>();

Components, Services, and Dependency Injection

[62]

We aliased the onDelete output property name with the name, deleteMyBook; now we
can use deleteMyBook as an event name on the selector instead of onDelete:

<book-details (deleteMyBook)="deleteBook($event)">
</book-details>

Now, we have successfully implemented communication between parent component and
child component in both directions:

www.ebook3000.com

http://www.ebook3000.org

Components, Services, and Dependency Injection

[63]

The arrows in the diagram represent data flow direction.

Sharing data using services
In our previous example, we have our books sample data in the mock-books.ts file, we
are accessing data in it directly in AppComponent. In real-world applications, we will access
the data from external data sources via rest services. We need to access the same data and
its operations in multiple components. We need a single, reusable data access point, and
this can be implemented as a service in Angular.

A service in Angular written using TypeScript is simply a class, which acts as a reusable
data access point. Let's refactor our data access logic into a service to fetch the data, filter the
data, and delete data; we were doing all these operations earlier in the component. Once we
move them to a service, they can be accessed anywhere within the components.

First, begin with creating another example from the last example, name it services,
change the name property to services in the package.json file to reflect the appropriate
example name.

The code for src/book-store.service.ts is as follows:

import { Injectable } from '@angular/core';

import { Book } from './book';
import { BOOKS } from './mock-books';

@Injectable()
export class BookStoreService {

 booksList: Book[] = BOOKS;

 getBooks () {
 return this.booksList;
 }

 getBook (isbn: number) {
 var selectedBook = this.booksList
 .filter(book => book.isbn === isbn);
 return selectedBook[0];
 }

 deleteBook (isbn: number) {
 this.booksList = this.booksList
 .filter(book => book.isbn !== isbn);

Components, Services, and Dependency Injection

[64]

 return this.booksList;
 }
}

BookStoreService contains logic for fetching the books list, filtering a single book, and
deleting a book. There is nothing special about this class, it is simply a TypeScript class with
methods operating on the booksList property, which is our data source.

In real-world applications, these methods might communicate with external rest services
using mechanisms like XHR and JSONP. The underlying logic can be changed anytime
without affecting components which are consuming a service as long as we do not change
the method signatures.

There is one noticeable thing, the @Injectable() decorator. The @Injectable()
decorator is used by TypeScript to emit metadata about our service, metadata that Angular
needs to inject other dependencies into this service. Our BookStoreService does not have
any dependencies at the moment, but we are adding the decorator as it is a best practice for
consistency in our code and might be useful in future.

Now we need to refactor our AppComponent to use BookStoreService methods. First, we
need to create a BookStoreService object. Unlike any other class, we can create an object
to BookStoreService using a new operator and its constructor inside the AppComponent
class:

var bookStoreService = new BookStoreService();

The preceding code snippet creates the BookStoreService object, but also creates
dependency, or tight coupling, between AppComponent and BookStoreService. If the
bookStoreService constructor definition changes, we need to update the AppComponent
and all other components wherever we create an object for this service. bookStoreService
might be dependent on other services; we also need to manage those dependencies.

We do change the definitions in real-world applications, managing all these dependencies
between services, directives, and components is difficult, and our code quickly becomes
unmanageable and unit testing becomes tough. This is where dependency injection comes
into play. Instead of creating objects for dependencies, they can be passed to dependent
object constructor:

export class AppComponent {
 constructor (private bookStoreService: BookStoreService) {
 }
}

www.ebook3000.com

http://www.ebook3000.org

Components, Services, and Dependency Injection

[65]

Someone needs to create the object for BookStoreService and pass it an AppComponent
constructor. Angular comes with its own dependency injection system.

Instead of creating the BookStoreService object using a new operator, we will instruct
Angular to create an instance of service and inject it into the component, this a two-step
process:

Pass the service object to the component constructor as a parameter
Specify the service to which we need an object in the providers array of the
@Component({ providers: [] }) decorator on the component:

 import {BookStoreService} from './contacts/contacts.service';

 @Component({
 providers: [BookStoreService]
 })
 export class AppComponent {
 constructor(private bookStoreService:BookStoreService) { }
 }

In the preceding code snippet, when Angular looks at the constructor parameter, it will go
to the providers array in the decorator for a matching provider, and it creates an instance
of the mentioned service using the provider. We will learn in detail about why this is
happening and why we need to specify the service in providers arrays.

The preceding code snippet does a little bit of magic because of TypeScript. For any public
or private parameters mentioned on the constructor, TypeScript automatically creates a
property in the class and assigns it with the value of the constructor parameter inside the
constructor. TypeScript interprets the preceding code like this:

class AppComponent {
 bookStoreService: BookStoreService;

 constructor(private bookStoreService: BookStoreService) {
 this.bookStoreService = bookStoreService;
 }
}

The following is the full rewritten implementation of AppComponent using
BookStoreService.

The code for src/app.component.ts is as follows:

import { Component, OnInit } from '@angular/core';
import { Book } from './book';

Components, Services, and Dependency Injection

[66]

import { BookStoreService } from './book-store.service';

@Component({
 selector: 'books-list',
 templateUrl: 'src/app.component.html',
 providers: [BookStoreService]
})
export class AppComponent implements OnInit {

 booksList: Book[];
 selectedBook: Book;

 constructor(private bookStoreService: BookStoreService) { }

 ngOnInit() {
 this.getBooksList();
 }

 getBooksList() {
 this.booksList = this.bookStoreService.getBooks();
 }

 getBookDetails(isbn: number) {
 this.selectedBook = this.bookStoreService.getBook(isbn);
 }

 deleteBook(isbn: number) {
 this.selectedBook = null;
 this.booksList = this.bookStoreService.deleteBook(isbn);
 }
}

Here are a few important points about services:

Services declared inside the providers array of a parent component are
available to child components out of the box
Child components do not need to declare the services again in their providers
array
If a child component declares a service again in its providers array, which is
already declared in its parent component providers array, Angular will create a
new instance of service for the child component, and it will not use the parent
component's service
A service instance created at a child component is accessible only to itself and its
child components

www.ebook3000.com

http://www.ebook3000.org

Components, Services, and Dependency Injection

[67]

Instead of declaring services in the providers array of a component, we can also
declare them in the providers array of the module using a @NgModule({
providers: [] }) decorator
Services declared at module level are available throughout the module and its
submodules

One important thing in the AppComponent class is that instead of calling
the getBooksList() method directly in the constructor, we are calling it a special
method called ngOnInit(). As mentioned earlier, the ngOnInit() method is a component
lifecycle hook method invoked right after the component is created. The constructor job
is just to build and initialize the object, not fetching the data, this is taken care of by
the ngOnInit() method.

Dependency injection
In the previous section, we learned what dependency injection is and the need for it. We
skipped a few things like:

How is a service object created and injected into the constructor?
Why do we need to specify the service objects in the providers array?
Different mechanisms for creating a provider.

Using a class provider
As mentioned in the previous section, getting the instance of a service object is a two-step
process. In step one, we pass the service object as a parameter to the constructor:

export class AppComponent {
 constructor (private bookStoreService: BookStoreService) {
 }
}

At this moment, Angular does not know how to create an instance of BookStoreService,
the instance creation process is specified in the providers array in the decorator of the
Component class. The following code snippet is for our service from the previous example:

@Component({
 providers: [BookStoreService]
})
export class AppComponent {

Components, Services, and Dependency Injection

[68]

 constructor(private bookStoreService: BookStoreService) {
 }
}

In the preceding code snippet, in the decorator providers array, we simply gave the same
service name, providers: [BookStoreService], which is passed as a constructor
parameter.

How does the providers array create an object for BookStoreService?

 providers: [BookStoreService]

Well, the preceding code in the providers array is shorthand syntax. Here is how Angular
interprets it:

[{ provide: BookStoreService, useClass: BookStoreService }]

The preceding code snippet is an expanded version of a providers array; it is an object
literal with two properties:

The first property, provide is a token that serves as the key for both registering a
dependency value with an injector object and locating the provider from injector
object
The second property, useClass is a strategy used for creating the actual provider
definition object, which is the dependency value
There are many ways to create dependency values; useClass is one of them

In our case, both the key (token) and value (provider definition object) are the same,
shorthand syntax can be used only in this scenario.

Using a class provider with dependencies
Most of the time, our service depends on other services, and we inject those services into
our service constructor. However, we need to inform Angular how to create instances of
our dependencies. Here we have a service named ConsoleLoggerService which logs
data into the console:

@Injectable()
export class ConsoleLoggerService {
 log (message: string) {
 console.log(message);
 }
}

www.ebook3000.com

http://www.ebook3000.org

Components, Services, and Dependency Injection

[69]

Our BookStoreService is using a ConsoleLoggerService service to log the data, and it
is injected into the BookStoreService constructor:

@Injectable()
export class BookStoreService {

 constructor (private loggerService: ConsoleLoggerService)
 {}

 getBook (isbn: number) {
 this.loggerService.log('fetching book information');
 }
}

We used our BookStoreService in the component and mentioned it in the providers
array, but now BookStoreService is dependent on ConsoleLoggerService which is a
class. We can also simply specify it in the providers array, and it works.

In the following sections, we will learn how to deal with non-class dependencies like
interfaces and strings.

Using alternate class providers
The current BookStoreService retrieves all the data from a dummy data source. In the
future, we may decide to use GraphQL or a different implementation for our data source.

For example, suppose we implement a new service called BookStoreGraphQLService,
and this service also provides the same API as BookStoreService, we can simply swap
our BookStoreService provider with BookStoreGraphQLService:

providers: [{
 provide: BookStoreService,
 useClass: BookStoreGraphQLService
}]

Now, for all components where the BookStoreService key is injected, they will use the
BookStoreGraphQLService instance.

Components, Services, and Dependency Injection

[70]

Using aliased class providers
Here we have a different scenario. In the future, we will implemented new
BookStoreGraphQLService. We decided that all the new components will use this
implementation and old components continuously to use the existing BookStoreService
implementation. We can register the new service in the providers array and use it as
usual:

providers: [BookStoreGraphQLService, BookStoreService]

Though we have two different service applications working nicely, some day we may
decided that all the old components should also use the new BookStoreGraphQLService
service. One way is to go to all the components and services where the BookStoreService
key is used and replace it with the BookStoreGraphQLService key, which is not a good
option. Instead of modifying in all those places, we can specify that the BookStoreService
key use the BookStoreGraphQLService provider object using the useClass strategy:

providers: [BookStoreGraphQLService,
 {
 provide: BookStoreService,
 useClass: BookStoreGraphQLService
 }
]

The old components also now use the new BookStoreGraphQLService. However, there is
a small problem, if we look at how Angular interprets the preceding code:

providers: [{
 provide: BookStoreGraphQLService,
 useClass: BookStoreGraphQLService
 },
 {
 provide: BookStoreService,
 useClass: BookStoreGraphQLService
 }
]

www.ebook3000.com

http://www.ebook3000.org

Components, Services, and Dependency Injection

[71]

The Angular useClass strategy always creates a new instance of a given provider service
class, so here we will have two instances of BookStoreGraphQLService instead of one,
which is unnecessary. We can instruct Angular to use the existing
BookStoreGraphQLService instance for different tokens (provide) using the
useExisting strategy:

providers: [BookStoreGraphQLService,
 {
 provide: BookStoreService,
 useExisting: BookStoreGraphQLService
 }
]

There are two more different kinds of provider instantiation strategies; factory and value
providers, for creating the instance of a provide service object, which we will discuss in
future chapters.

Summary
We started this chapter by discussing the book list application which we built in previous
chapters. Then discussed how to break the single component into multiple components and
how the components communicate with each other using input and output properties. Then
discussed how to build a common data access point for components using services to share
the data between them. Finally, we discussed different strategies used for creating an
instance of provider service objects.

By the end of this chapter, the reader should have a good understanding of how to build
any UI application using multiple components and how to share the data between them. In
the next chapter, we will discuss how to create applications using RxJS and observables.

4
Working with Observables

In this chapter, we are going to look at the reactive programming paradigm embraced by
Angular and focus on how data flows through an application. We use Observables to
implement reactive programming concepts. ES7 has a proposal to include Observables into
JavaScript language. Today we can use them with the Reactive-Extensions for JavaScript
(RxJS) library. This chapter will cover only the essential concepts of RxJS, and there are a
good number of resources available for learning RxJS mentioned at the end. After going
through this chapter, we will understand the following concepts:

Reactive programming
RxJS basics
What are Observables and operators?
Writing components and services using Observables

Basics of RxJS and Observables
Before getting started with the basics of RxJS and Observables, first we need to understand
what reactive programming is and why it is important.

Reactive programming
In traditional imperative programming, a variable state will be modified when we are
explicitly assigning a new or updated value. In this case, the variable will lose its previous
value; here data is propagated using a pull mechanism, any part of an application
dependent on this variable or object has to pull the value explicitly when there are changes,
they are not propagated automatically.

www.ebook3000.com

http://www.ebook3000.org

Working with Observables

[73]

Reactive programs work in an opposite fashion. Instead of explicitly assigning new values,
they are pushed implicitly, and changes are propagated automatically to all the dependent
parts of the application. We will learn how to write reactive programs using Observables in
coming sections.

To learn more about reactive programming, check out the following links:

https://en.wikipedia.org/wiki/Reactive_programming

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

Let us learn the basics of RxJS, Observables, and operators.

Observer
The Observer is collection callbacks that know how to listen to values emitted by an
Observable:

interface Observer<T> {
 closed?: boolean;
 next: (value: T) => void;
 error: (err: any) => void;
 complete: () => void;
}

The Observer object has three callback methods: next(), error(), and complete().
These methods are explained in detail, as follows:

Every time an Observable emits the value, the next() callback is invoked
If there no more values emitted by Observable, the complete() callback is
invoked
The error() callback will be invoked if an error is thrown, then the Observer
will stop listening to values

https://en.wikipedia.org/wiki/Reactive_programming
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

Working with Observables

[74]

Observable
The Observable is a collection of values or events that arrive over time; it can model events,
asynchronous server requests, or animations in the UI. The Observable class has many
methods for creating Observable collections:

Observable.create()

Observable.of()

Observable.from()

Observable.fromArray()

Observable.fromEvent()

Observable.fromPromise()

Observable.interval()

Observable.timer()

The Observable is the core building block of RxJS; it is important for us to understand how
to use it in Angular and how Angular uses it internally. Let us use the
Observable.create() method to create it manually. The following example
demonstrates some of the key concepts of Observable:

The code for example01.html is as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Manually creating an Observable</title>
</head>
<body>
<script type="text/babel">
 const observable = Rx.Observable.create((observer) => {
 observer.next(1);
 observer.next(2);

 setTimeout(() => {
 observer.next(3);
 observer.next(4);
 observer.complete();
 }, 1000);

 observer.next(5);
 });

www.ebook3000.com

http://www.ebook3000.org

Working with Observables

[75]

 console.log('Before subscribe');

 observable.subscribe({
 next: val => console.log(`Got value ${val}`),
 error: err => console.log(`Something went wrong ${err}`),
 complete: () => console.log('I am done')
 });

 console.log('After subscribe');
</script>

<script src="https://unpkg.com/babel-standalone@6/babel.min.js">
</script>
<script src="https://unpkg.com/@reactivex/rxjs/dist/global/Rx.js">
</script>

</body>
</html>

If we open the example01.html file in the browser, we can view the following output
messages in the browser console:

Before subscribe
Got value 1
Got value 2
Got value 5
After subscribe
Got value 3
Got value 4
I am done

The Observable.create() method creates a new Observable using an Observer. The
Observable will emit values only when an Observer subscribes to it using
the subscribe() method, we can clear understand this behavior viewing at output
messages.

In the preceding example, we saw the Before subscribe message first, even though the
Observable object is already created, it will emit the values only after subscribe()
method is invoked.

Here is an example of working with DOM events using an Observable.

Working with Observables

[76]

The code for example02.html is as follows:

const mouseMoves = Rx.Observable.fromEvent(document, 'mousemove');

mouseMoves
 .subscribe(event => console.log(event.clientX, event.clientY));

The preceding example will log all the mouse movement to the browser's console.

Subscription
The subscription object represents the execution of an Observable, and it is used for
canceling the execution.

The code for example03.html is as follows:

const interval = Rx.Observable.interval(1000);
const subscription = interval.subscribe(val => console.log(val));

setTimeout(() => {
 subscription.unsubscribe();
}, 10000);

In the preceding example, Observable emits a value every one second, and we are logging
to the browser console. The Observable stops emitting the values after ten seconds, because
we are unsubscribing from it using the unsubscribe() method on the Subscription
object returned by the subscribe() method.

Operators
An operator is a pure function which creates a new Observable based on the current
Observable, and lets us perform various kinds of operations like filtering, mapping, and
delaying values. RxJS is very rich in terms of operators, and throughout the chapter we will
learn different types of operators.

www.ebook3000.com

http://www.ebook3000.org

Working with Observables

[77]

Here is an example using map() and filter() operators.

The code for example04.html is as follows:

const interval = Rx.Observable.interval(1000)
 .map(x => x * 2)
 .filter(x => x%2 === 0);

interval.subscribe(val => console.log(val));

In the preceding example, we use map() operator to multiply the values, then we use
the filter() operator to filter even values.

Observables in Angular
Angular uses Observables internally in a lot of concepts like forms, HTTP, and router. In
this chapter, we will only look at how to use Observables with events and how to use
operators.

Observable stream and mapping values
Here is an example of handling a button click and textbox input using an Observable.

The code for example05/src/app.component.ts is as follows:

import { Component, ElementRef, OnInit, ViewChild } from
 '@angular/core';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/fromEvent';
import 'rxjs/add/operator/map';

@Component({
 selector: 'app-root',
 template: `
 <div class="container">
 <input #text class="form-control mt-1"/>
 <button #btn class="btn primary mt-1">Show Message!</button>
 <p class="mt-1">{{message}}</p>
 </div>
 `
})
export class AppComponent implements OnInit {
 @ViewChild('btn') btn;
 @ViewChild('text') text;

Working with Observables

[78]

 message: string;

 ngOnInit() {
 const btnOb$ = Observable
.fromEvent(this.btn.nativeElement, 'click');
 btnOb$
 .subscribe(res => this.message = 'Hello Angular, RxJS!');

 const textOb$ = Observable
.fromEvent(this.text.nativeElement, 'change')
.map((event: Event) => (<HTMLInputElement>event.target).value);
 textOb$.subscribe(res => this.message = res);
 }
}

Let us understand what is happening in the preceding Component:

We are accessing a button and textbox which are in the template using
@ViewChild in Component
We are accessing the underlying DOM elements using nativeElement property
We are creating an Observable, one for the button click and another for the text
change event
When the button is clicked, we are displaying the 'Hello Angular, RxJS!'
message

When the textbox text is changed, we are displaying the same text in the message

Merging Observable streams
In the preceding example, we have two redundant subscribe blocks doing the same thing,
we can refactor them using the merge() operator. We can include the merge() operator
using import 'rxjs/add/operator/merge':

ngOnInit() {
 const btnOb$ = Observable
 .fromEvent(this.btn.nativeElement, 'click')
 .map(event => 'Hello Angular, RxJS!');

 const textOb$ = Observable
.fromEvent(this.text.nativeElement, 'change')
 .map(event => event.target.value);

 Observable

www.ebook3000.com

http://www.ebook3000.org

Working with Observables

[79]

.merge(btnOb$, textOb$)

.subscribe(res => this.message = res);
}

We are using the merge() operator to combine both streams and subscribing to the output
stream, and it will concurrently emit all values from every given input Observable. In our
case, either the user clicks on the button or enters text into a textbox and we are going to
display the following message:

Using the Observable.interval() method
Let us build one more example to display a clock and understand some more concepts.

The code for example06/src/app.component.ts is as follows:

import { Component, OnInit } from '@angular/core';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/interval';
import 'rxjs/add/operator/map';

@Component({
 selector: 'app-root',
 template: `
 <div class="container">

Working with Observables

[80]

 <p class="mt-1">{{time}}</p>
 </div>
 `
})
export class AppComponent implements OnInit {
 time: string;

 ngOnInit() {
 const timer$ = Observable.interval(1000)
 .map(event => new Date());

 timer$.subscribe(val => this.time = val.toString());
 }
}

The preceding example updates the timer on the view every one second to display the
clock. Instead of subscribing to the timer$ Observable, let us display it directly in views:

import { Component } from '@angular/core';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/interval';
import 'rxjs/add/operator/map';

@Component({
 selector: 'app-root',
 template: `
 <div class="container">
 <h4 class="mt-1">{{timer$}}</h4>
 </div>
 `
})
export class AppComponent {

 timer$ = Observable.interval(1000)
 .map(event => new Date());
}

www.ebook3000.com

http://www.ebook3000.org

Working with Observables

[81]

The preceding code snippet will display [object Object] on the browser screen. Because
timer$ Observable is an object not a value, but the timer$ Observable emits the date and
time.

We can access this value only the subscribe() method. Angular provides the AsyncPipe
to access the values emitted by an Observable directly in the view.

Using AsyncPipe
The async pipe subscribes to an Observable internally and returns the latest value it has
emitted:

template: `
 <div class="container">
 <h4 class="mt-1">{{timer$ | async}}</h4>
 </div>
`

Now we get the same output as previously but without directly subscribing to the
Observable. Let us format our date using DatePipe just to display only the time:

template: `
 <div class="container">
 <h4 class="mt-1">
 TIME: {{timer$ | async | date: 'mediumTime'}}
 </h4>
 </div>

Working with Observables

[82]

Building a Books Search component
To understand Observables in depth, we are going to look at one more example. In Chapter
2, Basics of Components, we built a master-details books application. Let us add search
functionality to it. We need the following functionality in the search form:

When a user starts typing in the search box, we should show the book title
suggestion
The user should be able to select the title from the suggestions
The user should be able to search and see a list of books based on the input
entered in the search box

All the required source code for setup is available under
chaper04/books-search in provided source code.

The following is BookSearchComponent where we are going to implement the search
functionality using Observables and RxJS operators.

The code for src/books/book-search/book-search.component.ts is as follows:

import { Component, OnInit, ViewChild } from '@angular/core';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/fromEvent';
import 'rxjs/add/operator/map';

@Component({
 moduleId: module.id,
 selector: 'book-search',
 styleUrls: ['./book-search.component.css'],
 template: `
 <h3 class="page-title">Books Search</h3>
 <div class="search-container">
 <div class="books-search-form">
 <input type="text" #searchInput
 class="search-input" placeholder="Book Title">
 <button class="btn btn-primary">Search</button>
 </div>

 <li *ngFor="let bookTitle of bookTitles">
 {{bookTitle}}

 </div>

www.ebook3000.com

http://www.ebook3000.org

Working with Observables

[83]

 `
})
export class BookSearchComponent implements OnInit {
 @ViewChild('searchInput') searchInput;
 bookTitles: Array<string>;

 ngOnInit() {
 Observable.fromEvent(this.searchInput.nativeElement, 'keyup')
 .map((event: KeyboardEvent) =>
 (<HTMLInputElement>event.target).value)
 .subscribe(title => console.log(title));
 }
}

In the preceding Component, we are capturing all user input entered into the search box
using an Observable and displaying it in the console.

To search book titles and books based on user input, we need to implement that
functionality in a service, following BookStoreService implementing that. It has two
methods, one for searching books and one for searching book titles.

The code for src/books/book-store.service.ts is as follows:

import { Injectable } from '@angular/core';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/of';

import { Book } from './book';
import MOCK_BOOKS from './mock-books';

@Injectable()

Working with Observables

[84]

export class BookStoreService {

 booksList: Book[] = MOCK_BOOKS;

 getBooks(title: string): Observable<Book[]> {
 return Observable.of(this.filterBooks(title));
 }

 getBookTitles(title: string): Observable<string[]> {
 return Observable.of(this.filterBooks(title)
 .map(book => book.title));
 }

 filterBooks(title: string): Book[] {
 return title ?
 this.booksList.filter((book)
 => new RegExp(title, 'gi').test(book.title)) :
 [];
}
}

We can update our search component to use BookStoreService for the book title
suggestions when the user starts entering input.

The code for src/books/book-search/book-search.component.ts is as follows:

ngOnInit() {
 Observable.fromEvent(this.searchInput.nativeElement, 'keyup')
 .map((event: KeyboardEvent) =>
 (<HTMLInputElement>event.target).value)
 .subscribe(title =>
 this.bookStoreService
 .getBookTitles(title)
 .subscribe(bookTitles => this.bookTitles = bookTitles));
}

www.ebook3000.com

http://www.ebook3000.org

Working with Observables

[85]

In the subscribe() method, we are calling the getBookTitles() method and passing
text entered in the search box, which again returns the book title results Observable.

Everything looks nice; we are getting the results, but there is something that is not right in
the preceding code snippet. We are using one subscribe() inside another subscribe()
method this again, is similar to nested callbacks. We should not write the code this way
using RxJS. To deal with this kind of problem, RxJS provides many operators.

In our case, we can use the mergeMap() operator; it takes the source value of the input
Observable and produces a flat output Observable based on applying a function that we
provide.

The code for src/books/book-search/book-search.component.ts is as follows:

ngOnInit() {
 Observable.fromEvent(this.searchInput.nativeElement, 'keyup')
 .map((event: KeyboardEvent) =>
 (<HTMLInputElement>event.target).value)
 .mergeMap(title => this.bookStoreService.getBookTitles(title))
 .subscribe(bookTitles => this.bookTitles = bookTitles);
}

We need to refactor this code to perform better. Right now, as soon as the user starts typing,
we are making services calls. The application should wait for the user to enter some
characters and only then make the services call, we also do not need to call the service again
if the next search term is the same as previous. This can be achieved using
debounceTime() and distinctUntilChanged() operators.

The code for src/books/book-search/book-search.component.ts is as follows:

ngOnInit() {
 Observable.fromEvent(this.searchInput.nativeElement, 'keyup')
 .debounceTime(400)
 .distinctUntilChanged()
 .map((event: KeyboardEvent) =>
 (<HTMLInputElement>event.target).value)
 .switchMap(title =>
 this.bookStoreService.getBookTitles(title))
 .subscribe(bookTitles => this.bookTitles = bookTitles);
}

The debounceTime(400) operator waits for 400 ms after each keystroke before considering
the search term, the distinctUntilChanged() operator ignores it if the next search term
is the same as previous. Now we are using the switchMap() operator instead of the
mergeMap() operator; it switches to a new Observable each time the search term changes.

Working with Observables

[86]

We make more changes to our code to send the search term to the parent component when
a user clicks on the search button. We will do that using the @Output() decorator, as we
learned in the last chapter.

The code for src/books/book-search/book-search.component.ts is as follows:

import { Component, OnInit, ViewChild } from '@angular/core';
import { Output, EventEmitter } from '@angular/core';
import { BookStoreService } from '../book-store.service';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/fromEvent';
import 'rxjs/add/operator/map';
import 'rxjs/add/operator/filter';
import 'rxjs/add/operator/switchMap';
import 'rxjs/add/operator/debounceTime';
import 'rxjs/add/operator/distinctUntilChanged';

@Component({
 moduleId: module.id,
 selector: 'book-search',
 templateUrl: './book-search.component.html',
 styleUrls: ['./book-search.component.css']
})
export class BookSearchComponent implements OnInit {
 @ViewChild('searchInput') searchInput;
 @ViewChild('suggestions') suggestions;
 bookTitles: Array<string> = [];
 searchInputTerm: string = '';

 @Output() search = new EventEmitter<string>();

 constructor(private bookStoreService: BookStoreService) {
 }

 ngOnInit() {
 Observable.fromEvent(this.searchInput.nativeElement, 'keyup')
 .debounceTime(400)
 .distinctUntilChanged()
 .map((event: KeyboardEvent) =>
 (<HTMLInputElement>event.target).value)
 .switchMap(title =>
 this.bookStoreService.getBookTitles(title))
 .subscribe(bookTitles => this.bookTitles = bookTitles);

 Observable.fromEvent(this.suggestions.nativeElement, 'click')
 .map((event: KeyboardEvent) =>
 (<HTMLInputElement>event.srcElement).innerText)
 .subscribe(res => {

www.ebook3000.com

http://www.ebook3000.org

Working with Observables

[87]

 this.searchInputTerm = res;
 this.bookTitles = [];
 });
 }

 searchBooks() {
 this.bookTitles = [];
 this.search.emit(this.searchInputTerm);
 }
}

The code for src/books/book-search/book-search.component.html is as follows:

<h3 class="page-title">Books Search</h3>
<div class="search-container">
 <div class="books-search-form">
 <input type="text" #searchInput class="search-input"
 placeholder="Book Title" [(ngModel)]="searchInputTerm">
 <button class="btn btn-primary" (click)="searchBooks()">
Search
 </button>
 </div>
 <div class="title-suggestion-list--wrapper">
 <ul class="title-suggestion-list" #suggestions
[style.display]="bookTitles.length > 0 ? 'block' : 'none'">
 <li *ngFor="let bookTitle of bookTitles">{{bookTitle}}

 </div>
</div>

Here is the AppComponent hosting BookSearchComponent and BooksListComponent
which is the root component of our application.

The code for src/app.component.ts is as follows:

import { Component } from '@angular/core';
import { BookStoreService, Book } from './books/index';

@Component({
 selector: 'app-root',
 template: `
 <div class="container">
 <book-search (search)="searchBook($event)"></book-search>
 <books-list [books]="filteredBooks"></books-list>
 </div>
 `,
 providers: [BookStoreService]
})

Working with Observables

[88]

export class AppComponent {
 filteredBooks: Book[];

 constructor(private bookStoreService: BookStoreService) {
 }

 searchBook(title: string) {
 this.bookStoreService
 .getBooks(title)
 .subscribe(books => this.filteredBooks = books);
 }
}

Below is the BooksListComponent used in AppComponent to display a book list based on
user search input.

The code for src/books/books-list/books-list.component.ts is as follows:

import { Component, Input } from '@angular/core';
import { Book } from '../book';

@Component({
 selector: 'books-list',
 styles: [`
 .book-item {
 margin-bottom: 1rem;
 }
.cover-image-container {
 width: 100%;
 }
 .cover-image-container img {
 width: 100%;
 vertical-align: 0;
 border: 0;
 }
 `],
 template: `
 <div class="row mt-1">
 <div class="col-sm-12">
 <div class="row">
 <div class="col-sm-3 book-item"
 *ngFor="let book of books">
 <div class="cover-image-container">

 </div>
 </div>
 </div>

www.ebook3000.com

http://www.ebook3000.org

Working with Observables

[89]

 </div>
 </div>
 `
})
export class BooksListComponent {
 @Input() books: Book[] = [];
}

Here is the final output of our application:

All the preceding example's source code is available under chaper4 in the
provided source code.

As mentioned at the start of this section, we have different concepts like the router module,
forms module, and HTTP module that are implemented using Observables. We will
continue learning how to use Observables in coming chapters.

More resources for learning RxJS can be found at h t t p ://r e a c t i v e x . i o /r
x j s /

http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/

Working with Observables

[90]

Summary
We started this chapter with what reactive programming is and how to implement it using
the concept of Observables. Next, we looked at the basics of RxJS, such as Observables and
operators and how to use them to write Angular components and services in different
scenarios.

By the end of this chapter, the reader should have a good understanding of different RxJS
concepts like what Observables and operators are, and how to use them in various
scenarios. In the next chapter, we will discuss how to build forms using Angular.

www.ebook3000.com

http://www.ebook3000.org

5
Handling Forms

In this chapter, we are going to learn how to use the new forms API in Angular to build
user interfaces to capture, validate, and submit user inputs. After going through this
chapter, the reader will understand the following concepts:

Template driven forms in Angular
Reactive forms in Anlgular
Validating form inputs

Why are forms hard?
Forms are the key to any web application; they help us in capturing input from users. Here
are a couple of things we do with forms:

Capturing input from the user
Validating the user input
Responding to events
Displaying the information messages
Displaying the error messages

Validations make forms harder to deal with because we do not know in which fashion the
user enters the data. One control logic might be dependent on other control input.
Sometimes, we need to trigger validation logic on the server based on user input (checking
uniqueness of username or e-mail address). We need to maintain the overall state of the
form even if it spans multiple templates, like wizards. Angular provides a simpler approach
for capturing the user input as well as for dealing with validations.

Handling Forms

[92]

Angular forms API
On the DOM, we have input controls, and we need information about the controls, such as
their value, whether the data entered is valid according to validation rules, how the user
has interacted with the control, whether they changed its value or touched it yet, and how
we want to be notified of their events (click, blur, and other DOM events) when they occur.
Angular has the following two approaches for dealing with forms:

Template driven forms
Reactive forms

Each technique has different opinions on how to handle forms; we will look at them in
detail in upcoming sections.

FormControl, FormGroup, and FormArray
The FormControl, FormGroup, and FromArray classes are the key to both techniques. Let
us understand these classes first, and then we can explore each method in detail.

FormControl
Control is the smallest unit in any form; it represents a single form input element (textbox,
dropdown, radio button, checkbox, and so on). Control is the fundamental building block of
forms API in Angular; a control object encapsulates the input field's value and its state. It is
represented using the FormControl class.

Creating a form control
The following code snippet creates a single control named firstName:

let firstName = new FormControl();

The following code snippet creates a single control named firstName and initializes it with
an empty default value:

let firstName = new FormControl('');

The following code snippet creates a single control named firstName, and initializes with
default value 'Shravan':

let firstName = new FormControl('Shravan');

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[93]

Accessing the value of an input control
Using value property of form control object, we can get the value of the input:

let firstNameValue = firstName.value;

Setting the value of input control
We cannot use value property to set the value of form control; it is just a getter. We should
use the setValue() method to set the value programmatically:

firstName.setValue('Shravan');

Resetting the value of an input control
The reset() method on the form control sets the value to null:

firstName.reset();

Input control states
Every input control on an Angular form and the form itself maintains different states
depending on the user input and interaction with it:

//form control error list object
let errors = firstName.errors

// form control value is valid, it has no errors
let isValid = firstName.valid

// form control value is invalid, it has errors
let isInValid = firstName.invalid

//Control has been visited
let isTouched = firstName.touched

//Control has not been visited
let isUnTouched = firstName.untouched

//Form control's value has changed
let valueChanged = firstName.dirty

//Form control's value has not changed
let valueNotChanged = firstName.pristine

Handling Forms

[94]

Whenever an input control's state changes, Angular will update the element with the
following classes:

State Class if true Class if false

Control has been visited ng-touched ng-untouched

Control's value has changed ng-dirty ng-pristine

Control's value is valid ng-valid ng-invalid

The preceding states and classes are not applicable to only the FormControl object, they
shall also apply to FormGroup, FormArray, and the entire form.

FormGroup
Even a simple form contains more than one control that might be dependent on each other.
Instated of working with each control and iterating over them to know the value and state
of each control and form, we want to know the state of multiple controls at once. Sometimes
it makes more sense to think of a series of form controls as a group.

We have another class, FormGroup which comes in handy. It is a collection of form controls
and maintains the overall state of the form. For example, we need a user address which
contains the street, city, state, country, and zip code. We can create five individual
FormControl objects and work them one at a time, but all together they represent an
address where we can use the FormGroup class:

//create a form group
let address = new FormGroup({
 street: new FormControl(''),
 city: new FormControl(''),
 state: new FormControl(''),
 country: new FormControl(''),
 zip: new FormControl('')
});

//return an object literal of form group value
let formModel = address.value; //{street: "", city: "", state: "",
country: "", zip: ""}

//check overall state form state
let errors = address.errors; //null
let isValid = address.valid; //true
let isInValid = address.invalid; //false
let isTouched = address.touched; //false

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[95]

let isUnTouched = address.untouched; //true
let valueChanged = address.dirty; //false
let valueNotChanged = address.pristine; //true

//set the value of the form group
address.setValue({
 street: '1-3 Strand',
 city: 'London',
 state: '',
 country: 'UK',
 zip: 'WC2N 5BW'
});

We can use the setValue() method to set the value for FormGroup programmatically, but
we must pass all the controls which are declared initially with FormGroup. Otherwise,
the setValue() method throws an error.

If we need to update FormGroup partially from a superset or subset, we can use the
patchValue() method:

address.patchValue({
 street: '1-3 Strand',
 city: 'London'
});

The patchValue() method accepts both supersets and subsets of the group without
throwing an error.

Form (<form></form>) itself is represented using the FormGroup class.

FormArray
The FormArray class is similar to the FormGroup class, it is also a collection of form
controls and maintains the overall state of the form. We can use FormArray to create a form
of variable or unknown length:

//create a form array
let registration = new FormArray([
 new FormControl('Shravan'),
 new FormControl('Kasagoni'),
 new FormControl('shravan@theshravan.net')
]);

Handling Forms

[96]

registration.push(new FormControl('UK'));
registration.patchValue(['London','W5']);

//access form array value
console.log(registration.value);
console.log(registration.value[0]);

Now, we have learned the foundation classes for the Angular forms module. Let us dive
into different approaches provided by Angular.

Template driven forms
The template driven forms approach is similar to working with forms in Angular 1.x. As the
names suggest, we will write all the logic, like creating form controls, forms, and defining
validations inside the template in a declarative manner.

Creating a registration form
To begin with template driven forms in Angular, let us start with creating a project named
forms and using the following directory structure and files:

forms
├─ index.html
├─ package.json
├─ src
│ ├─ app.component.ts
│ ├─ app.module.ts
│ ├─ main.ts
│ └─ registration-form
│ ├─ registration-form.component.html
│ └─ registration-form.component.ts
├─ styles.css
├─ systemjs-angular-loader.js
├─ systemjs.config.js
└─ tsconfig.json

We need to add the code to package.json, tsconfig.json, systemjs-angular-
loader.js, system.config.js, and index.html from the last example in Chapter 4,
Working with Observables.

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[97]

Before we run the application, let us make sure we have "@angular/forms": "^4.0.0"
added to the dependencies section in the package.json file and add the following line;
'@angular/forms': ng:forms/bundles/forms.umd.js', to map the object in
the systemjs.config.js file.

The code for styles.css is as follows:

/**
The stylesheet is very long, reader can add it from sample code under
chapter5/forms example.
**/

The code for src/app.module.ts is as follows:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';
import { RegistrationFormComponent } from './registration-
form/registration-form.component';

@NgModule({
 imports: [BrowserModule, FormsModule],
 declarations: [AppComponent, RegistrationFormComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

We added FormsModule from the '@angular/forms' package to import arrays, all the
classes related to template driven forms are in this module. The
RegistrationFormComponent is added to the declarations array, and this component
is part of our AppModule, we can access it anywhere in our AppModule.

The code for src/app.component.ts is as follows:

import { Component } from '@angular/core';

@Component({
 selector: 'forms-app',
 template: '<registration-form></registration-form>'
})
export class AppComponent {
}

Handling Forms

[98]

We do not have much code in AppComponent, it is just a placeholder for displaying
RegistrationFormComponent. In the AppComponent template, we are using the
<registration-form> tag which is the selector for RegistrationFormComponent. Also,
make sure we update the <forms-app> selector inside the <body> tags in index.html.

All the upcoming examples will use the AppComponent just as a placeholder for displaying
other components, there is no added advantage here but we will understand why we are
doing this in future chapters.

The code for src/registration-form/registration-form.component.ts is as
follows:

import { Component } from '@angular/core';

@Component({
 selector: 'registration-form',
 templateUrl: './registration-form.component.html'
})
export class RegistrationFormComponent {
}

The code for src/registration-form/registration-form.component.html is as
follows:

<div class="row m-1">
 <div class="col-md-8">
 <div class="box">
 <div class="box-header">
 <h2>Registration Form</h2>
 </div>
 <div class="box-divider"></div>
 <div class="box-body">
 <div class="row">
 <div class="col-sm-6 form-group">
 <label>First name</label>
 <input type="text" class="form-control">
 </div>
 <div class="col-sm-6 form-group">
 <label>Last name</label>
 <input type="text" class="form-control">
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[99]

It looks like there is a lot of code in the template, but we have only two textboxes; the other
pieces are just HTML and CSS classes from Bootstrap for styling purposes. There is no
Angular forms-related code yet.

Our application is ready. Now run the npm install command, once it is finished run the
npm start command. This will start our application in the browser. We can view the
following output in the browser:

We have two HTML input controls on the page. We need to make them form controls by
adding some Angular forms-related code.

When we are working with template driven forms, we will never directly create
FormControl, FormGroup object on our own. Instead we will use ngModel,
ngModelGroup, ngForm directives on input controls everything internally handled by
Angular.

Using the ngModel directive
To work with individual input controls, we should use the ngModel directive. Let us add it
to our input controls (First name and Last name) in the registration-
form.component.html template:

<input type="text" class="form-control" ngModel>

<input type="text" class="form-control" ngModel>

We added ngModel to our input controls. There won't be any change in browser output, but
under the hood Angular creates two FormControl objects for the First name and Last
name.

Handling Forms

[100]

Accessing an input control value using ngModel
The ngModel directive on the input controls represents the model object. To access it we
need to export to a template reference variable:

<input type="text" class="form-control"
ngModel #firstNameRef="ngModel">

<input type="text" class="form-control"
ngModel #lastNameRef="ngModel">

Now, we can use these #firstNameRef and #lastNameRef template reference variables to
access the model (FormControl) objects of the First name and Last name input controls
anywhere in the template. Let us use the template reference variables and interpolation
syntax to display the text typed into input controls:

<input type="text" class="form-control"
ngModel #firstNameRef="ngModel">
{{firstNameRef}}

<input type="text" class="form-control"
ngModel #lastNameRef="ngModel">
{{lastNameRef}}

Once we save the template, the browser will refresh with the following output:

The interpolation is displaying objects because, as mentioned earlier, template reference
variables to exported with the model(FormControl) object of input controls. We should use
properties to access their values and states:

{{firstNameRef.value}}

{{lastNameRef.value}}

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[101]

After saving the code, once the browser refreshes, starting typing the same text in any of the
input fields. Immediately we can see those values getting displayed on the browser screen:

Using ngModel to bind a string value
If we need to bind an input control to an initial value, we can just specify
ngModel="<value>". This is a simple string binding. We are not using either property
binding or event binding. The example for this is shown in the following code snippet:

<input type="text" class="form-control"
ngModel="Shravan" #firstNameRef="ngModel">
{{firstNameRef.value}}

<input type="text" class="form-control"
ngModel="Kasagoni" #lastNameRef="ngModel">
{{lastNameRef.value}}

Once we save the template, the browser will refresh with the following output:

Handling Forms

[102]

Using ngModel to bind a component property
The code for src/registration-form/registration-form.component.ts is as
follows:

import { Component } from '@angular/core';

interface User {
 firstName: string;
 lastName: string;
}

@Component({
 selector: 'registration-form',
 templateUrl: './registration-form.component.html'
})
export class RegistrationFormComponent {
 user: User = {
 firstName: 'Shravan',
 lastName: 'Kasagoni'
 }
}

We have a user object initialized inside the RegistrationFormComponent class. Let us use
this user object to initialize the input controls on the template.

The code for src/registration-form/registration-form.component.html is as
follows:

<input type="text" class="form-control"
 ngModel="user.firstName"
#firstNameRef="ngModel">

{{firstNameRef.value}}
 {{user.firstName}}

<input type="text" class="form-control"
 ngModel="user.lastName"
#lastNameRef="ngModel">
 {{lastNameRef.value}}
 {{user.lastName}}

If we look at the output in the browser, the input controls and their interpolation has
displayed the user.firstName and the user.lastName strings directly instead of their
values. Because we are using ngModel="<value>", it is just a simple string binding, not
property binding. Let us update our code to use property binding and set the initial values:

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[103]

<input type="text" class="form-control"
 [ngModel]="user.firstName"
#firstNameRef="ngModel">

<input type="text" class="form-control"
 [ngModel]="user.lastName"
#lastNameRef="ngModel">

After updating the input controls with property binding, the component will start
displaying the user.firstName and user.lastName property values. One interesting
behavior we can observe, once we start changing the values in the input controls, their
interpolation binding will update with whatever we type, but not the component
properties. Because property binding is one-way binding, it will not update the property
back with data changes in the input control.

To update the bound property with the updated value of the input control, we can use two-
way data binding like this: [(ngModel)]="user.firstName".

However, it is not recommended to use two-way data binding in template driven forms
until it is necessary because we have to maintain the state in both the template and
component which is unnecessary, and it might cause unknown problems.

How can we get the values of input controls back to the component?

We should use the form template reference variable and submit the value of it to the
component. Let us remove all the code added to the template and component, put it back to
the initial state of our example, and add a <form> tag to it:

<div class="box-body">
 <form novalidate>
 <div class="row">
 <div class="col-sm-6 form-group">
 <label>First name</label>
 <input type="text" class="form-control"
 ngModel #firstNameRef="ngModel">
 </div>
 <div class="col-sm-6 form-group">
 <label>Last name</label>
 <input type="text" class="form-control"
 ngModel #lastNameRef="ngModel">
 </div>
 </div>
 <button type="submit"
 class="btn btn-secondary">Submit</button>
 </form>
</div>

Handling Forms

[104]

We added a <form> tag and a submit button inside of it; once the browser refreshes with
the latest output, there are a lot of errors in the console:

The error message pretty clearly says:

If ngModel is used within a form tag, either the name attribute must be set, or the form
control must be defined as 'standalone' in ngModelOptions.

When we use ngModel on the input control inside a <form> tag, we must declare a name
attribute on it. The ngModel registers the input controls using their name attribute on the
form. Let us add a name property to both our input controls:

<input type="text" class="form-control" name="firstName"
ngModel #firstNameRef="ngModel">

<input type="text" class="form-control" name="lastName"
ngModel #lastNameRef="ngModel">

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[105]

Using the ngForm directive
The ngForm directive on the form tag represents the model (FormGroup) object, to access it
we need to export to a template reference variable:

<form novalidate #formRef="ngForm"></form>
<pre>{{formRef | json}}</pre>

The code between <form></form> tags is removed for readability. We can use #formRef
template reference variables to access the form model (FormGroup) objects, #formRef
variable, and JSON pipe is used to display its entire structure of form model:

We do not need the entire structure; we simply need the value of the form. Let us use the
value property on the FormGroup class because internally ngForm is a FormGroup:

<pre>{{formRef.value | json}}</pre>

Handling Forms

[106]

Now we can view the JSON object displayed on the browser screen with the values of the
input controls:

Interestingly, we did not add the ngForm directive on the <form> tag like we added the
ngModel directive on the input controls. This is because whenever Angular encounters a
<form> tag in the template, it will activate and attach the ngForm directive to the <form>
tag implicitly, we do not need to add the ngForm directive on the form tag explicitly.

If we do not want ngForm directive to automatically attach the <form>
tag, we can disable this functionality by adding the ngNoForm directive as
an attribute to the <form> tag.

Submitting a form using the ngSubmit method
To submit our form, we should use an ngSubmit event and attach it to a method in the
component. Let us add a method to which we would display the value passed to it in the
browser console:

export class RegistrationFormComponent {
 onSubmit(formValue) {
 console.log(formValue);
 }
}

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[107]

Let us invoke the onSubmit() method whenever an ngSubmit event is triggered:

<form novalidate #formRef="ngForm"
 (ngSubmit)="onSubmit(formRef.value)">
</form>

Now, once we type some data and click on the Submit button, it will trigger the
(ngSubmit) event, which invokes the onSubmit() method on the component. To
the onSubmit() method, we are passing our form value using formRef.value and
displaying it in the browser console:

We are extending our example to use a couple of more fields and the most commonly-used
controls (radio buttons, checkbox, and dropdown) in the forms.

Let us begin with adding email, password, and confirmPassword fields:

<div class="form-group">
 <label>Email</label>
 <input type="email" class="form-control" name="email"
 ngModel #emailRef="ngModel">
</div>
<div class="row">
 <div class="col-sm-6 form-group">
 <label>Enter Password</label>
 <input type="password" class="form-control"
 name="password" ngModel #passwordRef="ngModel">
 </div>

Handling Forms

[108]

 <div class="col-sm-6 form-group">
 <label>Confirm Password</label>
 <input type="password"
 class="form-control" name="confirmPassword"
 ngModel #confirmPassRef="ngModel">
 </div>
</div>
<div class="row">
 <div class="col-sm-6 form-group">
 <label>Street</label>
 <input type="text" class="form-control" name="street"
 ngModel #streetRef="ngModel">
 </div>
 <div class="col-sm-6 form-group">
 <label>City</label>
 <input type="text" class="form-control" name="city"
 ngModel #cityRef="ngModel">
 </div> </div>

Now let us add street, city, state, zip, and country fields:

<div class="row">
 <div class="col-sm-6 form-group">
 <label>Street</label>
 <input type="text" class="form-control" name="street"
 ngModel #streetRef="ngModel">
 </div>
 <div class="col-sm-6 form-group">
 <label>City</label>
 <input type="text" class="form-control" name="city"
 ngModel #cityRef="ngModel">
 </div>
</div>
<div class="row">
 <div class="col-sm-6 form-group">
 <label>State</label>
 <input type="text" class="form-control" name="state"
 ngModel #stateRef="ngModel">
 </div>
 <div class="col-sm-6 form-group">
 <label>Zip</label>
 <input type="text" class="form-control" name="zip"
 ngModel #zipRef="ngModel">
 </div>
</div>
<div class="form-group">
 <label>Country</label>
 <select class="form-control" name="country"

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[109]

 ngModel="" #countryRef="ngModel">
 <option value="IN">India</option>
 <option value="US">United States of America</option>
 </select>
</div>

Let us add gender and service agreements fields:

<div class="row">
 <div class="col-sm-12 form-group">
 <label>Gender</label>
 <div>
 <label class="check-label">
 <input type="radio" name="gender" value="Male"
 ngModel #genderRef="ngModel"><i class="blue"></i>Male
 </label>
 <div class="spacer"></div>
 <label class="check-label">
 <input type="radio" name="gender" value="Female"
 ngModel #genderRef="ngModel"><i class="blue"></i>Female
 </label>
 <div class="spacer"></div>
 <label class="check-label">
 <input type="radio" name="gender" value="Other"
 ngModel #genderRef="ngModel"><i class="blue"></i>Other
 </label>
 </div>
 </div>
</div>
<div class="form-group">
 <label class="check-label">
 <input type="checkbox" name="agreement" value=""
 ngModel #agreementRef="ngModel"><i class="blue"></i>
 I agree to the Terms of Service
 </label>
</div>

Handling Forms

[110]

Once we save the template, the browser refreshes with the latest out fill in the input and by
clicking on the Submit button, we can view all the selected values as an object in displayed
in the console. In real-world applications, we might send this data to the server using HTTP
or we might perform some more operations on this data:

Using the ngModelGroup directive
As mentioned in the FormGroup section, sometimes it makes more sense to think of a series
of form controls as a group and work with them. In our example, we have street, city,
state, zip, and country and we are treating all these fields as individual controls, but all
they represent is the address, so we treat all of them as the address group.

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[111]

In the template driven to group the controls, we can use the ngModelGroup directive. Let
us place all the street, city, state, zip, and country fields inside a div tag and attach it
to the ngModelGroup directive:

<div ngModelGroup="address" #addressRef="ngModelGroup">
 <!-- street, city, state, zip and country fields code-->
</div>

Once again, we fill in the input and click on Submit. We can view all selected values as an
object printed in the console and street, city, state, zip, and country properties are
now under the address object, instead of the root:

The ngModelGroup value and state depend on all the controls inside of it; we can use its
template reference variable, #addressRef to access the value, state, and other properties
inside the template. Internally, the ngModelGroup directive is FormGroup.

Handling Forms

[112]

Adding validations to the registration form
Before submitting any form, we need to validate whether the input entered by the user is
correct or not. To apply the validation on the forms, Angular provides the following
validation directives, we can also build our custom validators:

required: Marks a control to have a non-empty value
minlength: Applies minimum length validation
maxlength: Applies maximum length validation
pattern: Validates a control value to match a regex

Based on the input validity, validation directives change the state of the ngModel,
ngModelGroup, and ngForm, we can access them using their template reference variables.
Let us use the Angular validation directives to apply validation on our form controls. To
demonstrate validation directives, we are going to use only the firstName input field. We
can apply validation to the rest of the fields in a similar fashion.

Let us start with creating a project named form-validations from the previous example
forms, change the name in the package.json file to form-validations:

<input type="text" class="form-control" name="firstName"
 ngModel #firstNameRef="ngModel" required>
<pre>{{firstNameRef?.errors | json}}</pre>
<pre>{{firstNameRef.valid}}</pre>
<pre>{{formRef.valid}}</pre>

We applied the required directive on our firstName field, the user must enter some
input before submitting it:

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[113]

We are using the errors property on the form control object to get the list of errors. The
errors property value is either an object or object of objects depending on the number of
validations we apply on the form control. For each validation directive, errors property
will have an object that contains information about it.

In our example, we applied required directive on the form control, and its errors
property is { "required": true }. It tells us that this field is required, we can use the
information in errors property to display error messages and feedback to the user on the
form.

The form control, valid property is returning false because its validation rules are not
satisfied and the form valid property is also returning false because its state is calculated
based on the control's state inside of it. Once all the controls inside the form become valid,
its state also becomes valid.

Handling Forms

[114]

Let us use the errors property to display an error message to the user:

<input type="text" class="form-control" name="firstName"
 ngModel #firstNameRef="ngModel" required
 [class.ctrl-error] = "firstNameRef.touched &&
 firstNameRef?.errors?.required">
<div *ngIf="firstNameRef.touched &&
 firstNameRef?.errors?.required" class="error-message">
 The first name is required.
</div>

The output for the error message can be seen in the following screenshot:

We are using errors and touched properties to display the error message as soon as the
user leaves the First name textbox when entering the input. We are also using the same
properties on the First name textbox to make the red color border using class binding.

We can apply as many validations we want on input controls. Let's use the minlength
directive to implement a validation to force the user to enter a minimum of three characters
into the First name textbox:

<input type="text" class="form-control" name="firstName"
 ngModel #firstNameRef="ngModel" required minlength="3">

<div class="error-message" *ngIf="firstNameRef.touched &&
 firstNameRef?.errors?.required">
 The first name is required.
</div>

<div class="error-message" *ngIf="firstNameRef.touched &&
 firstNameRef?.errors?.minlength">
You should enter minimum
{{firstNameRef?.errors?.minlength.requiredLength}}
characters into first name, but you entered only

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[115]

{{firstNameRef?.errors?.minlength.actualLength}} characters.
</div>

If the user enters less than or equal to two characters in the First name textbox, the
following error message will be displayed:

Let us do one last thing in our form. Even though there are errors, the user can submit it,
which shouldn't be the case, so we will disable the Submit button if the form is invalid:

<button type="submit" class="btn btn-secondary"
 [disabled]="formRef.invalid">Submit</button>

Handling Forms

[116]

Here is an example of a fully-implemented form with all the validations. The sample code is
under the chapter5/form-validations example:

Pros and cons of template driven forms
It is very easy to create large forms in a declarative fashion using template driven forms.
However, the downside is all the logic, and validation rules are in HTML. It is difficult to
unit test validation logic. We have to do end to end testing to verify the functionality using
tools like protractor.

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[117]

Reactive forms
Reactive forms (also known as model-driven forms) are the new approach introduced in
Angular. In contrast to template driven forms in reactive forms, we will write all the form
logic like creating controls, forms, and defining validation rules inside our component
classes using the forms API instead of HTML.

In a reactive forms approach, we will directly use the classes FormControl, FormGroup,
FormArray, and FormBuilder to create input controls, forms, and apply validation rules
inside the Component class.

Let us create our previous example using the reactive forms approach.

Creating a registration form using reactive forms
To begin reactive forms in Angular, let us start by setting up a project named reactive-
forms and using the following directory structure and files. Copy the previous code
example:

reactive-forms
├─ index.html
├─ package.json
├─ src
│ ├─ app.component.ts
│ ├─ app.module.ts
│ ├─ main.ts
│ └─ registration-reactive-form
│ ├─ registration-reactive-form.component.html
│ └─ registration-reactive-form.component.ts
├─ styles.css
├─ systemjs-angular-loader.js
├─ systemjs.config.js
└─ tsconfig.json

Handling Forms

[118]

The code for src/app.module.ts is as follows:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { ReactiveFormsModule } from '@angular/forms';

import { AppComponent } from './app.component';
import { RegistrationReactiveFormComponent }
 from './registration- reactive-form
 /registration-reactive-form.component';

@NgModule({
 imports: [BrowserModule, ReactiveFormsModule],
 declarations: [AppComponent, RegistrationReactiveFormComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

We must import and include ReactiveFormsModule to the imports array because all the
form's API classes, FormControl, FormGroup, FormArray, FormBuilder, and
Validators are available in that module.

The code for src/app.component.ts is as follows:

import { Component } from '@angular/core';

@Component({
 selector: 'forms-app',
 template: `<registration-reactive-form>
 </registration-reactive-form>`
})
export class AppComponent {
}

Using FormGroup, FormControl, and Validators
Let's use FormGroup, FormControl, and Validators classes to build our registration form
inside the Component class.

The code for src/registration-reactive-form/registration-reactive-
form.component.ts is as follows:

import { Component, OnInit } from '@angular/core';
import { FormGroup, FormControl, Validators }
 from '@angular/forms';

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[119]

@Component({
 selector: 'registration-reactive-form',
 templateUrl: './registration-reactive-form.component.html'
})
export class RegistrationReactiveFormComponent implements OnInit {

 EMAIL_REGEX = "[a-z0-9!#$%&'*+\/=?^_`{|}~.-]+@[a-z0-9]([a-z0-9-
]*[a-z0-9])?(\.[a-z0-9]([a-z0-9-]*[a-z0-9])?)*";

 registrationForm: FormGroup;

 ngOnInit() {
 this.registrationForm = new FormGroup({
 firstName: new FormControl('Shravan', Validators.required),
 lastName: new FormControl(''),
 email: new FormControl('', [Validators.required,
 Validators.pattern(this.EMAIL_REGEX)])
 });
 }

 onSubmit(formValue) {
 console.log(formValue);
 console.log(this.registrationForm.value)
 }
}

The code is pretty much self-explanatory. At the start of the chapter, we discussed the
FormControl and FormGroup classes.

In our component, we applied validation on the form controls using the Validators class
which provides the same validation directives (required, minlength, maxlength,
pattern) we discussed in template driven forms as a method. If we need to use multiple
validation directives on the single form control, we can pass them in an array.

Using [formGroup], formControlName, and
formGroupName
Now we need to bind FormGroup to the <form> tag using [formGroup] binding, and
FormControl to the <input> tag using the formControlName directive:

<form novalidate [formGroup]="registrationForm"
 (ngSubmit)="onSubmit(registrationForm.value)">
 <input type="email" class="form-control"
 formControlName="email">
 <div class="error-message"

Handling Forms

[120]

 *ngIf="registrationForm.get('email').touched &&
 registrationForm.get('email').hasError('required')">
 The email is required.
 </div>
 <div class="error-message"
 *ngIf="registrationForm.get('email').touched &&
 registrationForm.get('email').hasError('pattern')">
 The email format should be <i>shravan@theshravan.net</i>
 </div>
 <button type="submit" class="btn btn-secondary"
 [disabled]="registrationForm.invalid">Submit</button>
</form>

We are binding the registrationForm object (an instance of FormGroup class) to
[formGroup]. E-mail input is attached to email property (an instance of a FormControl
class) using the formControlName directive.

In reactive forms, we do not need the name property on input controls because they are
created in the component and just bound to controls in the template. We also do not need a
template reference variable; we can directly access the form controls using the get()
method on the FormGroup class like registrationForm.get('email'), this will access
all the methods and properties on the FormControl class.

We are accessing the validations on form controls using the hasError() method instead of
the errors property, any approach works fine. The output would be pretty much the same.

To group the controls, we need to nest the form group inside another form group:

this.registrationForm = new FormGroup({
 firstName: new FormControl('Shravan', Validators.required),
 lastName: new FormControl(''),
 email: new FormControl('', [Validators.required,
 Validators.pattern(this.EMAIL_REGEX)]),
 address: new FormGroup({
 street: new FormControl(''),
 country: new FormControl('', Validators.required)
 })
 });

We need to use the formGroupName directive to bind the group controls in HTML:

<div formGroupName="address">
 <div class="row">
 <div class="col-sm-6 form-group">
 <label>Street</label>
 <input type="text" class="form-control"
 formControlName="street">

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[121]

 </div>
 </div>
 <div class="form-group">
 <label>Country</label>
 <select class="form-control" formControlName="country">
 <option value="IN">India</option>
 <option value="UK">United Kingdom</option>
 </select>
 <div class="error-message" *ngIf="
 registrationForm.get('address').get('country')
 .touched &&
 registrationForm.get('address').get('country')
 .hasError('required')">
 The country is required.
 </div>
 </div>
</div>

The remaining code in the template is removed for readability. The preceding code snippet
should be inside <form novalidate [formGroup]="registrationForm"></form>
tags.

Using FormBuilder
The FormBuilder class provides a simpler API to deal with control groups:

import { Component, OnInit } from '@angular/core';
import { FormGroup, Validators, FormBuilder } from
 '@angular/forms';

@Component({
 selector: 'registration-reactive-form',
 templateUrl: './registration-reactive-form.component.html'
})
export class RegistrationReactiveFormComponent implements OnInit {
 EMAIL_REGEX = "^[a-z0-9!#$%&'*+\/=?^_`{|}~.-]+@[a-z0-9]([a-z0-9-
]*[a-z0-9])?(\.[a-z0-9]([a-z0-9-]*[a-z0-9])?)*$";

registrationForm: FormGroup;

 constructor(public formBuilder: FormBuilder) { }

 ngOnInit() {
 this.registrationForm = this.formBuilder.group({
 firstName: ['Shravan', Validators.required],
 lastName: '',

Handling Forms

[122]

 email: ['', [Validators.required,
 Validators.pattern(this.EMAIL_REGEX)]],
 address: this.formBuilder.group({
 street: '',
 city: ['', Validators.required],
 state: ['', Validators.required],
 zip: '',
 country: ['', Validators.required]
 })
 });
 }
}

The FormBuilder class group() method returns the FormGroup object itself. Inside the
group method, we are only passing the initial value and Validators for form control
instead of creating a FormControl object manually every time. We do not need to make
any changes in the template, it just works, this is a simplified API.

CustomValidators
In Angular, a validator is a simple function which accepts AbstractControl as an input
parameter and returns an object literal where the key is error code and the value is true if it
fails.

We want to use this CustomValidators in multiple components, let us create a class
named CustomValidators and add our custom validation functions inside of it.

The code for src/custom-validators.ts is as follows:

import { AbstractControl } from '@angular/forms';

export class CustomValidators {

 static passwordStrength (control: AbstractControl) {

 if (CustomValidators.isEmptyValue(control.value)) {
 return null;
 }

 if (!control.value.match(/^(?=
 .*[0-9])(?=.*[!@#\$%\^&*])(?=.*[a-z])
 (?=.*[A-Z])[a-zA-Z0-9!@#\$%\^&*]{8,}$/)) {
 return {'weakPassword': true};
 }
 retrun null;

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[123]

 }

 static isEmptyValue (value) {
 return value == null ||
 typeof value === 'string' && value.length === 0;
 }
}

We created a static method, passwordStrength() which accepts control as a parameter
and compares its value against a regular expression to check the strength of the password
and returns an error object if the control value does not meet the regular expression criteria:

import { CustomValidators } from '../CustomValidators';

ngOnInit () {
this.registrationForm = this.formBuilder.group({
 password: ['', [Validators.required,
 CustomValidators.passwordStrength]]
});
}

Inside the template, we should have the same property (weakPassword) in the error object
returned by CustomValidators using the hasError('weakPassword') method:

<input type="password" class="form-control"
 formControlName="password" >
<div class="error-message"
 *ngIf="registrationForm.get('password').touched &&
 registrationForm.get('password').hasError('required')">
The password is required.
</div>
<div class="error-message"
 *ngIf="registrationForm.get('password').touched &&
 registrationForm.get('password').hasError('weakPassword')">
The password must be minimum 8 characters, must contain at
least 1 lowercase alphabet, 1 uppercase alphabet, 1 numeric
character, 1 special character.
</div>

Handling Forms

[124]

We learned how to apply the custom validation on a single control, but sometimes our logic
depends on multiple control values in that we should use the validators at the group level.
Let us create one more validator which compares both password and confirm password
values and returns an error object if both passwords do not match:

import { AbstractControl } from '@angular/forms';

export class CustomValidators {

 static passwordMatcher(control: AbstractControl) {

 const password = control.get('password').value;
 const confirmPassword = control.get('confirmPassword').value;

 if (CustomValidators.isEmptyValue(password) ||
 CustomValidators.isEmptyValue(confirmPassword)) {
 return null;
 }

 return password === confirmPassword ? null
 : { 'mismatch': true };
 }

 static isEmptyValue(value) {
 return value == null ||
 typeof value === 'string' && value.length === 0;
 }
}

We can use the passwordMatcher() validator at the form group level in the component
and its error object in the template:

 ngOnInit () {
 this.registrationForm = this.formBuilder.group({
 password: ['', [Validators.required,
 CustomValidators.passwordStrength]],
 confirmPassword: ['', Validators.required],
 }, {validator: CustomValidators.passwordMatcher});
 }

www.ebook3000.com

http://www.ebook3000.org

Handling Forms

[125]

In the template:

<form novalidate [formGroup]="registrationForm">
 <!-Remain code is removed for readability-->
 <input type="password" class="form-control"
 formControlName="confirmPassword">
 <div class="error-message" *ngIf="
 registrationForm.get('confirmPassword').touched &&
 registrationForm.get('confirmPassword').hasError('required')">
The confirm password is required.
 </div>
 <div class="error-message" *ngIf="
registrationForm.get('confirmPassword').touched &&
registrationForm.hasError('mismatch')">
 The confirm password should match password.
 </div>
</form>

Pros and cons of reactive forms
As mentioned earlier, the reactive forms approach is new in Angular. It is very easy to
define complex forms in code instead. As we are writing all the validation logic in the
components, unit testing our form's logic is quite easy without any dependency on DOM,
by simply instantiating the classes.

Summary
We started this chapter with a discussion on why developing forms is harder, and then we
discussed different kinds of approaches in Angular that makes the development easier. We
learned how to build the template driven forms and reactive forms and pros and cons of
both methods. We also learned how to use built-in validations and how to write
CustomValidators.

By the end of this chapter, the reader should have a good understanding of how to build
forms using different APIs in Angular.

6
Building a Book Store

Application
In this chapter, we will learn how to implement some real-world application scenarios by
developing a Book Store application. After going through this chapter, the reader will
understand the following concepts:

Communicating with the REST service using an HTTP client
Navigating between the components using routing
Animations
NgRX
Feature modules

Book Store application
We are going to learn how to develop a Book Store application using various Angular
concepts. The Book Store application consists of different components related to features
provided by a real book store, where we can view the available list of books and each book's
information, add new books, and delete old books. Before we start developing our Book
Store application, you are going to learn how to use an HTTP client in Angular.

HTTP
Any Angular application that needs to communicate with the backend using REST services
needs an HTTP client. Angular comes with its own HTTP library; it is available in the
@angular/http npm package.

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[127]

Before we start learning about the HTTP library, we need an application where we can use
it. We are going to use Angular CLI to create our project; before getting started, make sure
that you have Angular CLI installed on your machine.

Run the following command to install Angular CLI:

$ npm install -g @angular/cli@latest

Run the following command to create an Angular project using CLI:

$ ng new http-client-basics

The preceding command will create the Angular application with all the required libraries
and tooling. Now navigate to our project folder and start the application using the
following commands:

$ cd http-client-basics
$ npm start

Now the project is running at: http://localhost:4200. Navigate to the URL in the
browser and we can view the output.

Learn more about Angular CLI at: https://cli.angular.io.

We need a little more setup before we start writing the code to use HTTP client. Our HTTP
client needs to connect to a REST service to get the data; for this example's purpose, we are
going to use the JSON server npm package to create a fake REST API. We can replace this
with any real REST API. Follow these steps to use the JSON server:

Install the JSON server npm package in our application root directory.1.

 $ npm install json-server --save-dev

Add the following command to the scripts section in the package.json file to2.
run the JSON server.

 "json-server": "json-server --watch db.json --port 4567"

https://cli.angular.io

Building a Book Store Application

[128]

Copy the db.json file to our application root directory. The file contains book information,
which we used in Chapter 3, Components, Services, and Dependency Injection, (you can copy
this file from source code under chapter6/http-client-basics). Now run the
following command to invoke the JSON server:

$ npm run json-server

The preceding command will start our API at the URL http://localhost:4567. We can
navigate to this URL in the browser to check the functionality.

Learn more about the JSON server
at: https://github.com/typicode/json-server.

www.ebook3000.com

https://github.com/typicode/json-server
http://www.ebook3000.org

Building a Book Store Application

[129]

We have our API ready; let us write some code to communicate with the API. As mentioned
in the beginning, we need the @angular/http package to work with the HTTP client;
Angular CLI has already downloaded the npm package when we created the project.

Import HttpModule in our application module (src/app/app.module.ts).

import { HttpModule } from '@angular/http';

Add the HttpModule to the imports array in the @NgModule() decorator:

@NgModule({
 declarations: [
 AppComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule
],
 providers: [],
 bootstrap: [AppComponent]
})

Building a Book Store Application

[130]

Add the Book class under the app folder, which represents the book object structure.

The code for src/app/book.ts is as follows:

export class Book {
 id: number;
 isbn: number;
 title: string;
 authors: string;
 published: string;
 description: string;
 coverImage: string;
}

Let us add some code to our application component template (app.component.html).

<button (click)="getBooksData()">Get Books Data</button>
<pre>{{booksList | json}}</pre>

In the earlier template, we are calling the getBooksData() method on the Component class
whenever the button is clicked, and we also display the booksList array in JSON format
using the json pipe. We should define the getBooksData() method, and the booksList
array on the Component class (app.component.ts):

import { Component } from '@angular/core';
import { Book } from './book';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {

 booksList: Book[] = [];

 getBooksData() {
 console.log(this.booksList);
 }
}

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[131]

Making GET requests
The HTTP client is available as Http service in the @angular/http package; import it in
our component and inject it via dependency injection into a constructor:

import { Http } from '@angular/http';

constructor(private http: Http) { }

We have our HTTP client; now invoke the API to get the data whenever the user clicks on
the Get Books Data button:

getBooksData() {
 this.http.get('http://localhost:4567/books')
 .subscribe(res => this.booksList =
 res.json() as Book[]);
}

We are calling our API using the GET method. Angular Http service is an Observable,
and we need to subscribe to it to receive the response. Once the preceding code is added to
the getBooksData() method, if we click on the button, we will receive all of the books'
information in JSON format from the API.

Building a Book Store Application

[132]

We are just displaying all our responses on the template, which is not very useful. Let us
change it into a presentable format for the user.

The code for src/app/app.component.html is as follows:

<div>
 <div class="left-container">

 <li *ngFor="let book of booksList"
 (click)="getBookInfo(book.id)">
 {{book.title}}

 </div>
 <div *ngIf='book' class="right-container">
 <p>{{book.isbn}}</p>
 <p>{{book.title}}</p>
 <p>{{book.authors}}</p>
 <p>{{book.published}}</p>
 <p>{{book.description}}</p>
 <p>

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[133]

 </p>
 </div>
</div>

We update our template to display the list of books on the left side of the page. Whenever
the user clicks on the book name, we are calling our API using the HTTP client to get
specific book information, and the response is displayed on the right side of the page.

We have all the information-related books. Still, we are calling the API to get the specific
book information using the ID for this example's purpose only. A real-world API should
return only the required information, and we update our component to call the API to get
the specific book's information:

The code for src/app/app.component.ts is as follows:

import { Component, OnInit } from '@angular/core';
import { Http } from '@angular/http';
import { Book } from './book';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent implements OnInit {

 booksList: Book[] = [];
 book: Book;
 baseUrl: string = 'http://localhost:4567';

 constructor(private http: Http) { }

 ngOnInit() {
 this.getBooksData();
 }

 getBooksData() {
 const url = `${this.baseUrl}/books`;
 this.http.get(url)
 .subscribe(res => this.booksList =
 res.json() as Book[]);
 }

 getBookInfo(id: number) {
 const url = `${this.baseUrl}/books/${id}`;
 this.http.get(url)
 .subscribe(res => this.book = res.json() as Book);

Building a Book Store Application

[134]

 }
}

Here is the output:

Let us refactor our code before moving on to the next section. In our example,
AppComponent is directly communicating with API using the Http service. This is the
responsibility of an Angular service. Move all the logic related to API communication to a
Book Store service:

The code for src/app/book-store.service.ts is as follows:

import { Injectable } from '@angular/core';
import { Http } from '@angular/http';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/operator/map';
import { Book } from './book';

@Injectable()
export class BookStoreService {

 baseUrl: string = 'http://localhost:4567';

 constructor(private http: Http) { }

 getBooksList(): Observable<Book[]> {

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[135]

 const url = `${this.baseUrl}/books`;
 return this.http.get(url)
 .map(response => response.json() as Book[]);
 }

 getBook(id: number): Observable<Book> {
 const url = `${this.baseUrl}/books/${id}`;
 return this.http.get(url)
 .map(response => response.json() as Book);
 }
}

We need to import and add the BookStoreService to the providers array in the
AppModule before we can start using it:

The code for src/app/app.module.ts is as follows:

import { BookStoreService } from './book-store.service';

@NgModule({
 ...
providers: [BookStoreService],
...
})
export class AppModule { }

Here is the refactored AppComponent using the BookStoreService to get the data from
the API:

The code for src/app/app.component.ts is as follows:

import { BookStoreService } from './book-store.service';

export class AppComponent implements OnInit {

 booksList: Book[] = [];
 book: Book;

 constructor(private bookStoreService: BookStoreService) { }

 ngOnInit() {
 this.getBooksData();
 }

 getBooksData() {
 this.bookStoreService.getBooksList()
 .subscribe(books => this.booksList = books);

Building a Book Store Application

[136]

 }

 getBookInfo(id: number) {
 this.bookStoreService.getBook(id)
 .subscribe(book => this.book = book);
 }
}

In the next section, you are going to learn about routing, and we will be using a sample
Book Store application. At the end of Chapter 3, Components, Services, and Dependency
Injection, we created a master-detail application. The sample application is recreated using
Material Design Lite for styling, HTTP client to get the data, and it is available under the
Chapter6/start folder in the provided source code.

We can use the application under the Chapter6/start folder as a starting point to follow
along remaining of this chapter. Let us create the folder named book-store and copy all
the files and folders from the Chapter6/start directory.

Run the following commands in the root of the book-store folder before we get started
with routing:

$ npm install
$ npm run json-server
$ npm start

Navigate to http://localhost:4200 in the browser to view the Book Store application.

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[137]

Learn more about Material Design Lite at: https://getmdl.io.

Routing
In the previous chapters, you learned different concepts in Angular to build applications.
All our examples contain a maximum of two components. Any real-world application
contains many components; we should be able to navigate between the different
pages/components in the application, pass the data from one component to another
component, and update multiple components in the same component tree. Angular comes
with its own router, which is available in the @angular/router npm package.

https://getmdl.io

Building a Book Store Application

[138]

Defining routes
To get started with the router, we need to follow these steps:

Set the base href
Import the RouterModule into AppModule
Define the routes array using the Routes object
Add the routes to the import array using the RouterModule.forRoot() method
index.html

The browser uses the base href value to prefix relative URLs when referencing CSS, JS, and
image files. Here is an example of href:

<head>
<base href="/">
</head>

The code for src/app/app.module.ts is as follows:

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { ReactiveFormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { RouterModule, Routes } from '@angular/router';

import { AppComponent } from './app.component';
import { AboutComponent } from './about.component';

import {
 BooksListComponent,
 BookDetailsComponent,
 NewBookComponent,
 BookStoreService
} from './books';

import { Safe } from './safe';

const routes: Routes = [
 {path: '', redirectTo: 'books', pathMatch: 'full'},
 {path: 'books', component: BooksListComponent},
 {path: 'books/new', component: NewBookComponent},
 {path: 'books/:id', component: BookDetailsComponent},
 {path: 'about', component: AboutComponent},
];

@NgModule({

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[139]

 declarations: [
 AppComponent, AboutComponent, BooksListComponent,
 BookDetailsComponent, NewBookComponent, Safe
],
 imports: [
 BrowserModule, ReactiveFormsModule,
 HttpModule, RouterModule.forRoot(routes)
],
 providers: [BookStoreService],
 bootstrap: [AppComponent]
})
export class AppModule { }

Earlier in AppModule, we defined our routes array using the Routes object. Each route
specifies the current router state. The Routes object has many properties, and we are using
some of them to define routes for the Book Store application. The explanation for the
different types of routes we specified are as follows:

{path: '', redirectTo: 'books', pathMatch: 'full'}

If we look at our first route, the path property is empty; we specified the redirectTo
property. Whenever we launch the application start with /, it will redirect to the books
path and display its corresponding component:

{path: 'books', component: BooksListComponent}

Our second path is very simple; whenever the path is books, it will show the
BooksListComponent:

 {path: 'books/:id', component: BookDetailsComponent}

Our fourth path is bit different; it has two segments. The first segment is books, and it is a
simple string match. The second segment is :id and specifies the parameter for the route.

Earlier, in our routes for different paths, we specified BooksListComponent,
NewBookComponent, and AboutComponent, but we have not created these components in
our application. We also need a placeholder in our application to display these components.

RouterOutlet Directive
The RouterOutlet directive acts as a placeholder where Angular can dynamically show
the components based on the current router state.

Building a Book Store Application

[140]

In our application, till now we are displaying everything in AppComponent. We will be
using AppComponent as a placeholder to show the common elements and other
components based on the routes. We have a header and left-hand side menu, and both are
common across the application. We will keep them in as it is in AppComponent, and the
remaining space will display the other components using the RouterOutlet directive.

The code for src/app/app.component.ts is as follows:

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
}

We removed all the logic from AppComponent because it is going to act as a placeholder. If
we look at the template here, we removed all the code under the <main></main> tag and
added <router-outlet></router-outlet>, under the <main> tag to display the other
components:

The code for src/app/app.component.html is as follows:

<main class="mdl-layout__content page-content">
 <router-outlet></router-outlet>
 </main>

Earlier remaining code is removed for more readability; we can find the complete code from
the provided source code.

Let us create the BooksListComponent to display the list of books:

The code for src/app/books/books-list/books-list.component.ts is as follows:

import { Component, OnInit } from '@angular/core';
import { Book } from '../book';
import { BookStoreService } from '../book-store.service';

@Component({
 selector: 'books-list',
 templateUrl: './books-list.component.html',
 styleUrls: ['./books-list.component.scss']
})
export class BooksListComponent implements OnInit {

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[141]

 booksList: Book[];

 constructor(private storeService: BookStoreService) {
 }

 ngOnInit() {
 this.getBooksList();
 }

 getBooksList() {
 this.storeService.getBooks()
 .subscribe(books => this.booksList = books);
 }
}

The preceding component fetches the list of books from BookStoreService. As soon as
the application is loaded, the router will redirect to the BooksListComponent and display
the list of books. When we click VIEW BOOK link, we will navigate to
BookDetailsComponent to display a particular book's information:

Building a Book Store Application

[142]

Named RouterOutlet
We can use named outlets to load multiple components side by side instead of nesting
them. Named outlet is created by specifying the name attribute on the RouterOutlet
directive. We can have one primary outlet (unnamed outlet), as many named outlets:

<router-outlet></router-outlet>
<router-outlet name="secondary"></router-outlet>

We specify the targeted outlet while defining the route itself or while navigating to the
route imperatively or declaratively.

Navigation
The Angular router provides two ways to navigate from one component to another. The
declarative way using the RouterLink directive is as follows:

Add Book

We can specify the path for the routerLink directive as a string, and we can also generate
the path dynamically by binding it to an array using the property binding:

<a [routerLink]="['/books', book.id]">View Book

Earlier, two code snippets were used in the BooksListComponent template for navigation.
We can also navigate from one component to other components imperatively using
navigate() and navigateByUrl() methods in the Router object; we will be using them
in the next component (BookDetailsComponent) to navigate back to
BooksListComponent.

Route params
We can pass values when navigating from one component to the other. In our example, we
are passing the id value from BooksListComponent to BookDetailsComponent. We can
access route parameters using the ActivatedRoute object Params property:

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[143]

The code for src/app/books/book-details/book-details.component.ts is as
follows:

import { Component, OnInit } from '@angular/core';
import { ActivatedRoute, Params, Router }
 from '@angular/router';
import { Location } from '@angular/common';
import 'rxjs/add/operator/switchMap';
import { BookStoreService } from '../book-store.service';
import { Book } from '../book';

@Component({
 selector: 'book-details',
 templateUrl: './book-details.component.html',
 styleUrls: ['./book-details.component.scss']
})
export class BookDetailsComponent implements OnInit {

 book: Book;

 constructor(private route: ActivatedRoute,
 private router: Router,
 private location: Location,
 private storeService: BookStoreService) {
 }

 ngOnInit(): void {
 this.route.params.switchMap((params: Params) =>
this.storeService.getBook(+params['id']))
 .subscribe(book => this.book = book);
 }

 deleteBook(id: number) {
 this.storeService.deleteBook(id)
 .subscribe(res => this.router.navigate(['/books']));
 }

 goBack() {
 this.location.back();
 }
}

Building a Book Store Application

[144]

As soon as the component is initialized, we are use ActivatedRoute to access the route
parameters using the Params property, which is an Observable. We are use the
switchMap() operator on the Params Observable to receive the latest parameters, and then
we are invoke the BookStoreService and pass the id as a parameter to the getBook()
method using +params['id'].

When we are on the component, if the route parameters change, the router does not need to
re-activate the entire component because Params is an Observable, and it will receive the
new values and emits them. The switchMap() operator always subscribes to the latest
Observable, and it will always use the most recent values and executes the code. In our case,
it gets the data from service using the id parameter.

We have a deleteBook() method in the component which invokes the deleteBook()
method in BookStoreService. As soon we receive the response from the service, we
use the Router object navigate() method to go back to BooksListComponent. We are
also using the Location object back() method to go back to the previous route; Location
object uses the browser history to navigate backward and forward.

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[145]

Here is the implementation of NewBookComponent using reactive forms:

The code for src/app/books/new-book/new-book.component.ts is as follows:

import { Component, OnInit } from '@angular/core';
import { FormBuilder, FormGroup, Validators } from
 '@angular/forms';
import { Router } from '@angular/router';
import { Location } from '@angular/common';
import { Book } from '../book';
import { BookStoreService } from '../book-store.service';

@Component({
 selector: 'new-book',
 templateUrl: './new-book.component.html',
 styleUrls: ['./new-book.component.scss']
})
export class NewBookComponent implements OnInit {

 newBookForm: FormGroup;

 constructor(private formBuilder: FormBuilder,
 private router: Router,
 private location: Location,
 private storeService: BookStoreService) {
 }

 ngOnInit() {
 this.newBookForm = this.formBuilder.group({
 isbn: ['', Validators.required],
 title: ['', Validators.required],
 authors: ['', Validators.required],
 published: ['', Validators.required],
 description: ['', Validators.required],
 coverImage: ['', Validators.required]
 });
 }
 saveBook() {
 if (this.newBookForm.valid) {
 var book = this.newBookForm.value as Book;
 this.storeService.addBook(book)
 .subscribe(res => this.router.navigate(['/books']));
 }
 }
}

Building a Book Store Application

[146]

The code for src/app/books/new-book/new-book.component.html is as follows:

<section class="new-book-container">
 <h4>Add Book</h4>
 <form novalidate [formGroup]="newBookForm"
(ngSubmit)="saveBook()">
 <div class="mdl-textfield mdl-js-textfield mdl-textfield-
floating-label">
 <input class="mdl-textfield__input" type="text" id="isbn"
formControlName="isbn">
 <label class="mdl-textfield__label"
for="isbn">ISBN</label>
 </div>
 <div class="mdl-textfield mdl-js-textfield mdl-textfield-
floating-label">
 <input class="mdl-textfield__input" type="text"
id="title" formControlName="title">
 <label class="mdl-textfield__label" for="title">
Book Title</label>
 </div>

 <div class="mdl-textfield mdl-js-textfield mdl-textfield-
floating-label">
 <input class="mdl-textfield__input" type="text"
id="authors" formControlName="authors">
 <label class="mdl-textfield__label"
for="authors">Authors</label>
 </div>
 <div class="mdl-textfield mdl-js-textfield mdl-textfield-
floating-label ">
 <input class="mdl-textfield__input" type="text"
id="published" formControlName="published">
 <label class="mdl-textfield__label"
for="published">Published</label>
 </div>

 <div class="mdl-textfield mdl-js-textfield mdl-textfield-
floating-label floating-label-full">
 <input class="mdl-textfield__input" type="text"
id="description" formControlName="description">
 <label class="mdl-textfield__label"
for="description">Description</label>
 </div>

 <div class="mdl-textfield mdl-js-textfield mdl-textfield-
floating-label floating-label-full">

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[147]

 <input class="mdl-textfield__input" type="text"
id="coverImage" id="coverImage"
formControlName="coverImage">
 <label class="mdl-textfield__label"
for="coverImage">Cover Image</label>
 </div>

 <button type="submit" class="mdl-button mdl-js-button mdl-
button--raised mdl-js-ripple-effect mdl-button--colored"
[disabled]="newBookForm.invalid">
 Save
 </button>

 <button type="submit" class="mdl-button mdl-js-button mdl-
button--raised mdl-js-ripple-effect mdl-button--accent"
(click)="this.location.back()">
 Cancel
 </button>
 </form>
</section>

Here is the output:

Building a Book Store Application

[148]

Animating routed components
Motion adds more life to the user interface when it is carefully implemented. Animations let
us add different kinds of motions to the applications to make UI more appealing.

Angular implemented an animation system on top, Web Animations API, and it lets us
build animations that run at native performance, such as pure CSS animations. The
browsers that do not support the Web Animations API yet need the web-
animations.min.js polyfill.

For more information on Web Animations API, visit
https://w3c.github.io/web-animations. The web-animations.min.js polyfill file can
be downloaded at https://github.com/web-animations/web-animations-js.

In this section, we are going to learn how to animate while navigating between the
components.

First, let us see how to add the AnimationsModule to AppModule. The code for
src/app/app.module.ts is as follows:

import { BrowserAnimationsModule } from
 '@angular/platform-browser/animations';

...

@NgModule({
 ...
 imports: [
 ...
 BrowserAnimationsModule,
 RouterModule.forRoot(routes)
]
 ...
})
export class AppModule {
}

Now we will define animations. The code for src/app/animations.ts is as follows:

import { animate, state, style, transition, trigger,

AnimationTriggerMetadata } from '@angular/animations';

export const slideInOutAnimation: AnimationTriggerMetadata =
 trigger('routeAnimation', [
 state('*',

www.ebook3000.com

https://w3c.github.io/web-animations
https://github.com/web-animations/web-animations-js
http://www.ebook3000.org

Building a Book Store Application

[149]

 style({
 opacity: 1,
 transform: 'translateX(0)'
 })
),
 transition(':enter', [
 style({
 opacity: 0,
 transform: 'translateX(-100%)'
 }),
 animate('0.2s ease-in')
]),
 transition(':leave', [
 animate('0.4s ease-out', style({
 opacity: 0,
 transform: 'translateX(100%)'
 }))
])
]);

We use the following methods to define animations:

trigger(): This creates an animation trigger with a list of states and transition
state(): This declares an animation state within the given trigger; we are using
the * in our code, and it matches any animation state
style(): This takes in a key/value pair of CSS property/value pairs
transition(): This declares animation steps

We are creating animations for the component while entering and leaving the route state.
While entering, our component animates from left to right, while leaving, it animates from
right to left.

After defining animations, add animations to the component:

The code for src/app/books/books-list.component.ts is as follows:

import { Component, HostBinding, OnInit } from '@angular/core';

import { slideInOutAnimation } from '../../animations';

@Component({
 ...
 animations: [slideInOutAnimation]
})
export class BookDetailsComponent implements OnInit {
 ...

Building a Book Store Application

[150]

 @HostBinding('@routeAnimation') routeAnimation = true;
 @HostBinding('style.display') display = 'block';
 @HostBinding('style.position') position = 'absolute';
 ...
}

We imported the animation defined in the previous step and added it to the animations
array in the @Component() decorator, and we access the animation trigger and styles using
the @HostBinding() decorator.

We can follow the earlier steps to add the animation to any component in our example.

Feature modules using @NgModule()
As the number of components increases in the application, it becomes complex, and we
should segregate our components into different modules based on their functionality to
manage the complexity. Let us understand how to use @NgModule() to structure our
application components into feature modules.

We have only one module in our application; let us refactor it to create one more module.
We have a lot of functionality-related books in our application, so let's create a separate
module for this.

In the modules, we need to create a separate module for routes, and it keeps our feature
module class clean. Here is the books routing module, which includes all the book-related
routes.

The code for src/app/books/books-routing.module.ts is as follows:

import { NgModule } from '@angular/core';
import { RouterModule, Routes } from '@angular/router';

import { BooksListComponent } from
'./books-list/books-list.component';
import { BookDetailsComponent } from
'./book-details/book-details.component';
import { NewBookComponent } from
'./new-book/new-book.component';

const routes: Routes = [
 {path: 'books', component: BooksListComponent},
 {path: 'books/new', component: NewBookComponent},
 {path: 'books/:id', component: BookDetailsComponent}
];

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[151]

@NgModule({
 imports: [
 RouterModule.forChild(routes)
],
 exports: [
 RouterModule
]
})
export class BooksRoutingModule {
}

In the books routing module, while adding the routes to the imports array, we
use forChild() because this is going to be a child of the main application module.

Let us create the books feature module and add all the related components, services, and
routes.

The code for src/app/books/books.module.ts is as follows:

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { ReactiveFormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';

import { BooksListComponent } from
'./books-list/books-list.component';
import { BookDetailsComponent } from
'./book-details/book-details.component';
import { NewBookComponent } from
'./new-book/new-book.component';

import { BookStoreService } from './book-store.service';
import { BooksRoutingModule } from './books-routing.module';

@NgModule({
 declarations: [
 BooksListComponent,
 BookDetailsComponent,
 NewBookComponent
],
 imports: [
 CommonModule,
 ReactiveFormsModule,
 HttpModule,
 BooksRoutingModule
],
 providers: [BookStoreService]
})

Building a Book Store Application

[152]

export class BooksModule {
}

By now, we have a separate feature module for the books, and we need to add the main
AppModule before that lets us define a separate route module for AppModule.

The code for src/app/app-routing.module.ts is as follows:

import { NgModule } from '@angular/core';
import { RouterModule, Routes } from '@angular/router';

import { DashboardComponent } from './dashboard.component';
import { AboutComponent } from './about.component';

const routes: Routes = [
 {path: '', redirectTo: 'dashboard', pathMatch: 'full'},
 {path: 'dashboard', component: DashboardComponent},
 {path: 'about', component: AboutComponent}
];

@NgModule({
 imports: [
 RouterModule.forRoot(routes)
],
 exports: [
 RouterModule
]
})
export class AppRoutingModule {
}

Now we need to include the AppRoutingModule and books feature module to the
AppModule:

The code for src/app/app.module.ts is as follows:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { DashboardComponent } from './dashboard.component';
import { AboutComponent } from './about.component';
import { Safe } from './safe';

import { AppRoutingModule } from './app-routing.module';
import { BooksModule } from './books/books.module';

@NgModule({

www.ebook3000.com

http://www.ebook3000.org

Building a Book Store Application

[153]

 declarations: [
 AppComponent,
 DashboardComponent,
 AboutComponent,
 Safe
],
 imports: [
 BrowserModule,
 BooksModule,
 AppRoutingModule
],
 bootstrap: [AppComponent]
})
export class AppModule {
}

If we look at the AppModule, it looks tiny and clean now. Depending on the application
size, we create as many modules as we need. With the features, we can use the features like
lazy loading and preloading to improve the performance of the application also.

The source code for the refactored example is available under the Chapter6/book-store-
extended folder.

Summary
We started this chapter by discussing how to communicate with REST services using an
HTTP client, and we developed a basic example. Then, we refactored all the HTTP client-
related code to a service. Then, you learned about Angular routing basics and then we
implemented all the features in a Book Store application. We looked how to add animation
to routed components; finally, you learned how to refactor our application into features
modules.

By the end of this chapter, the reader should have a good understanding of how to build
any UI application with various Angular features, such as components, forms, HTTP, and
routing. In the next chapter, we will discuss how to test the Book Store application we
created in this chapter.

7
Testing

In this chapter, you will learn how to test Angular applications using different kinds of
testing techniques and tools. We look at some basic examples and real-world examples.
After going through this chapter, the reader will understand the following concepts:

Unit testing and end-to-end testing
How to write isolated and integrated unit tests
How to unit test components and services

Testing
Testing is one of the important aspects of application development, which ensures that the
application is working fine before we deploy to production for end user usage; it helps find
the bugs early and also ensures that we won't break the existing functionality as we add
new features to the application. It is important to make it a part of the development process
itself.

There are different kinds of software development processes that focus on testing. The test-
driven development (TDD) is one kind of technique that emphasizes on writing the tests
first then the actual functionality; we won't be diving more into TDD, which is beyond the
scope of this book. This chapter focuses on the following two primary tests methodologies
used by developers during the development:

Unit testing
End-to-end testing

www.ebook3000.com

http://www.ebook3000.org

Testing

[155]

Unit testing
Unit testing focuses on testing the individual parts of the applications; for example, in the
Angular application, we unit test functionality inside the components, services, directives,
and pipes.

End-to-end testing
End-to-end testing focuses on testing the entire application, and these tests run against the
application running in a real browser, interacting with it as a user would in the real world.
In this chapter, we are covering unit testing, end-to-end testing is beyond the scope of this
book.

Before we start writing the test, let's look at the tools required for unit testing.

Tooling
The following are the tools required for testing:

Jasmine: Jasmine is a behavior-driven development framework in order to test
JavaScript code, you can find more information on Jasmine
at: https://jasmine.github.io
Karma: Karma is a test runner we use for running our unit test while developing;
you can find more information on Karma at: http://karma-runner.github.io
Protractor: Protractor is an end-to-end testing framework for Angular
applications. You can find more information on Protractor
at: http://protractortest.org

Configuration files
The following are the Karma configuration files:

karma.conf.js: This is the Karma configuration file that specifies which plugins to
use, which application and test files to load, which browser(s) to use, and how to
report test results.
karma-test-shim.js: This is the shim that makes Karma work with the Angular
test environment and launches Karma itself; it includes some of the SystemJS
configuration in order to load Angular test utilities.

https://jasmine.github.io/
http://karma-runner.github.io/
http://protractortest.org/

Testing

[156]

Jasmine basics
Before we start writing the unit tests, let's look at some Jasmine functions that we use for
writing every unit test.

describe(): The describe function is a global Jasmine function. It is used for
grouping similar kinds of tests/specs together in a suite. The describe functions
can be nested. The syntax is as follows:

 describe('suite name', () => {

 //unit tests - it functions...
 });

it(): It is a Jasmine function used for writing the actual unit tests. The syntax is
as follows:

 it('test name', () => {
 //unit test code
 });

Matchers: Matchers are the built-in Jasmine functions used along with the
expect() function to compare the actual value with the expected value. Here are
the matcher functions provided by Jasmine:

toBe()

toEqual()

toMatch()

toBeDefined()

toBeUndefined()

toBeNull()

toBeNaN()

toBeTruthy()

toBeFalsy()

toHaveBeenCalled()

toHaveBeenCalledWith()

toHaveBeenCalledTimes()

toContain()

toBeLessThan()

toBeLessThanOrEqual()

www.ebook3000.com

http://www.ebook3000.org

Testing

[157]

toBeGreaterThan()

toBeGreaterThanOrEqual()

toBeCloseTo()

toThrow()

toThrowError()

expect(): It is an another Jasmine function that takes a value named actual
value, and it is used along with matcher functions to assert the expected value.
beforeEach(): beforeEach() is a Jasmine built-in function that runs the code
inside it before every test in the describe() function.
afterEach(): afterEach() is a Jasmine built-in function that runs the code
inside it after every test in the describe() function.
beforeAll(): beforeAll() is a Jasmine built-in function that runs the code
inside it only once before all the tests in the describe() function.
afterAll(): afterAll() is a Jasmine built-in function that runs the code inside
it only once after all tests completes the execution in the describe() function.

Unit testing
We can write two kinds of unit tests for Angular applications:

Isolated unit tests
Integrated unit tests

Isolated unit tests instantiate the class directly inside tests without any dependency on
Angular. They are used for testing only the component's logic (not the template), and they
are suitable for testing services, pipes, and directives.

Integrated unit tests are written using Angular test utility classes; they are used for testing
more complex scenarios dependent on Angular features, such as modules and templates.

Isolated unit tests
In this section, you are going to learn how to use some basics isolated unit tests. We are
going to use the unit-testing-setup project in the provided source code; this is just a
hello world Angular application. We are going to install Karma, Jasmine npm packages, and
set up the Karma to run our test using the Jasmine framework.

Testing

[158]

Let's create a project named 01-isolated-unit-tests from the unit-testing-
setup project. First, we need to install the npm packages and run the following commands
in the project:

npm install jasmine-core jasmine --save-dev
npm install karma karma-cli --save-dev
npm install karma-jasmine karma-chrome-launcher

Now add the following code to the scripts section in the package.json file to run Karma
directly using the npm run command:

"karma": "karma start karma.conf.js",
"pretest:once": "npm run build",
"pretest": "npm run build",
"test:once": "npm run karma -- --single-run",
"test": "concurrently \"npm run build:watch\" \"npm run karma\""

We need to include the karma.conf.js and karma-test-shim.js files to the root of our
project. The following is an example Karma configuration file, which provides the
instructions to the Karma test runner for which testing framework we want to use, required
plugins to run the tests, what files to include in the test, and what to exclude:

 module.exports = function (config) {
 var appSrcBase = 'src/';
 var appAssets = '/base/app/';
 config.set({
 basePath: '',
 frameworks: ['jasmine'],
 plugins: [
 require('karma-jasmine'),
 require('karma-chrome-launcher')
],
 client: {
 builtPaths: [appSrcBase]
 },
 files: [],
 proxies: {},
 exclude: [],
 preprocessors: {},
 reporters: ['progress'],
 port: 9876,
 colors: true,
 logLevel: config.LOG_INFO,
 autoWatch: true,
 browsers: ['Chrome'],
 singleRun: false,
 concurrency: Infinity

www.ebook3000.com

http://www.ebook3000.org

Testing

[159]

 });

 }

Our original karma.conf.js and karma-test-shim.js files in the project are very
lengthy; you can find them in the provided source code.

Writing basic isolated unit tests
Before we start writing unit tests, let's verify our test setup. Add the following unit test to
the project (src/app/app.component.spec.ts):

describe('my first unit test', () => {
 it('true is true', () => expect(true).toBe(true));
});

Now go to the command line, run the following command:

npm run test:once

The preceding command will run the test that we added in the previous step. If our setup is
ok at the end, we will get Executed 1 of 1 SUCCESS message and Karma will terminate
the execution.

Before we proceed, I want to discuss a bit about the test file name. It is using the same name
as the component name with the .spec suffix. In the Jasmine framework, tests are named
specs; it is a general convention to suffix all the test files with .spec and use the same
filename (components, services, directives, pipes, and routes), which we are testing.

Once again, go to the command line, run the following command:

npm run test

The preceding command will run Karma in watch mode. Every time we make a change in
the source code or test code, Karma will automatically run all the unit tests again.

Testing

[160]

Let's write some unit tests for our AppComponent:

The code for src/app/app.component.spec.ts is as follows:

import { AppComponent } from './app.component';

describe('AppComponent', () => {

 it('name is initialized with Angular', () => {
 let component = new AppComponent();
 expect(component.name).toBe('Angular');
 });

 it('name to be Angular UI', () => {
 let component = new AppComponent();
 expect(component.name).toBe('Angular');

 component.name = 'Angular UI';
 expect(component.name).toBe('Angular UI');
 });

});

We have two unit tests, one is checking the initial value of the name property in the
AppComponent class, and another one is verifying the changes to the name property. In both
the tests, we are instantiating the AppComponent class, which is not necessary, that we can
use the beforeEach() method in Jasmine framework to run the same code before every
test:

The code for src/app/app.component.spec.ts is as follows:

import { AppComponent } from './app.component';

describe('AppComponent', () => {
 let component: AppComponent;

 beforeEach(() => {
 component = new AppComponent();
 });

 it('name is initialized with Angular', () => {
 expect(component.name).toBe('Angular');
 });

 it('name to be Angular UI', () => {
 expect(component.name).toBe('Angular');

www.ebook3000.com

http://www.ebook3000.org

Testing

[161]

 component.name = 'Angular UI';
 expect(component.name).toBe('Angular UI');
 });

});

We understood how to write basic unit tests, but our AppComponent class does not have
any real functionality that we can test. Let's use the bookstore example that we developed in
the previous chapter so that we can understand how to write some useful unit tests.

You can use the book-store-start application in the Chapter7\book-store-start
source code to get started. This application is created using the Angular CLI, so it has all
necessary configuration in it already. Let's create an book-store application from book-
store-start application.

Testing services
In our Book Store application, we have BookStoreService, which communicates with the
external REST service using the Angular HTTP service to perform different operations on
the books list:

The code for src/app/books/book-store.service.spec.ts is as follows:

import { BookStoreService } from './book-store.service';

describe('BookStoreService', () => {
 let bookStoreService: BookStoreService;

 beforeEach(() => {
 bookStoreService = new BookStoreService();
 });
});

The preceding code snippet is incomplete. The BookStoreService constructor is expecting
an Angular HTTP service object as a parameter, and this is required because of the methods
in our service using HTTP methods, such as get(), post(), and delete() for different
operations. However, we should not call the real REST service using HTTP because we
want to test our service behavior, not the external REST service.

In these scenarios, we should mock the required object, and this can be simply done using
the jasmine.createSpyObj() method.

Testing

[162]

Mocking dependencies
Let's mock the Angular HTTP service using the jasmine.createSpyObj() method:

The code for src/app/books/book-store.service.spec.ts is as follows:

import { BookStoreService } from './book-store.service';

describe('BookStoreService', () => {
 let bookStoreService: BookStoreService,
 mockHttp;

 beforeEach(() => {
 mockHttp = jasmine.createSpyObj('mockHttp',
 ['get', 'post', 'delete']);

 bookStoreService = new BookStoreService(mockHttp);
 });
});

The jasmine.createSpyObj() method takes the mock object name as the first parameter
and methods for the mock object in the second parameter as an array.

Here is the test for the deleteBook() method in BookStoreService:

it('deleteBook should remove the book', () => {
 const book: Book = {
 id: 12,
 isbn: 9781849692380,
 title: 'test title',
 authors: 'test author',
 published: 'test date',
 description: 'test description',
 coverImage: 'test image'
 };

 mockHttp.delete.and.returnValue(Observable.of(book));
 const response = bookStoreService.deleteBook(12);
 response.subscribe(value => {
 expect(value).toBe(book);
});

The deleteBook() method returns the book we delete as an Observable and we are
mocking that return value using the Jasmine returnValue() method. We are using the
subscribe() method to receive the values and comparing the response value with book.

www.ebook3000.com

http://www.ebook3000.org

Testing

[163]

Let's write some more unit tests and verify the parameters passed to the HTTP delete
method. The code for src/app/books/book-store.service.spec.ts is as follows:

import { BookStoreService } from './book-store.service';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/of';
import { Book } from './book';

describe('BookStoreService', () => {
 let bookStoreService: BookStoreService,
 mockHttp;

 beforeEach(() => {
 mockHttp = jasmine.createSpyObj('mockHttp', ['get', 'post', 'delete']);
 bookStoreService = new BookStoreService(mockHttp);
 });

 describe('deleteBook', () => {

 it('should remove the book', () => {
 const book: Book = {
 id: 12,
 isbn: 9781849692380,
 title: 'test title',
 authors: 'test author',
 published: 'test date',
 description: 'test description',
 coverImage: 'test image'
 };

 mockHttp.delete.and.returnValue(Observable.of(book));
 const response = bookStoreService.deleteBook(12);
 response.subscribe(value => {
 expect(value).toBe(book);
 });

 it('should call http delete method with right url', () => {
 const id = 12;
 const url = `http://58e15045f7d7f41200261f77.mockapi.io/
 api/v1/books/${id}`;
 mockHttp.delete.and.returnValue(Observable.of(true));
 const response = bookStoreService.deleteBook(id);
 expect(mockHttp.delete).toHaveBeenCalledWith(url,
 jasmine.any(Object));
 });

 });
});

Testing

[164]

We can test the remaining methods similarly. Let's look at how to test components using
isolated unit tests.

Testing components
In our Book Store application, we have multiple components. Let's look at how to test
BooksListComponent. Testing the component is very similar to the way we tested service.

The code for src/app/books/books-list/books-list.component.spec.ts is as
follows:

import { BooksListComponent } from './books-list.component';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/of';

describe('BooksListComponent', () => {
 let booksListComponent: BooksListComponent,
 mockBookStoreService;

 beforeEach(() => {
 mockBookStoreService = jasmine.createSpyObj(
 'mockBookStoreService', ['getBooks']);
 booksListComponent =
 new BooksListComponent(mockBookStoreService);
 });

 it('initial books list should be empty', () => {
 expect(booksListComponent.booksList.length).toBe(0);
 });

 describe('ngOnInit', () => {

 it('should fetch books list', () => {
 const books = [{}, {}];
 expect(booksListComponent.booksList.length).toBe(0);
 mockBookStoreService.getBooks
 .and.returnValue(Observable.of(books));
 booksListComponent.ngOnInit();
 expect(booksListComponent.booksList.length).toBe(2);
 });

 });
});

www.ebook3000.com

http://www.ebook3000.org

Testing

[165]

Our BooksListComponent is dependent on BookStoreService, so we need to mock this.
We have a booksList property, which is initially empty after we invoke the ngOnInit()
method. The booksList property might change; we need to test this behavior. In the
application, ngOnInit() is invoked as part of the component life cycle; here, we need to
invoke it explicitly.

Integrated unit tests
Testing simple bindings and method logic is enough most of the times, but we also want to
understand how our component logic is working along with the templates, child
components, and routes. To do this, isolated unit tests are enough.

Testing a component with a simple template also could be complex. For this, Angular
provides testing utilities in the @angular/core/testing module. These testing utility
classes help us to test our application close to the Angular runtime environment.

Testing components
Here is our AboutComponent, which just displays the property values on the template; this
is the right place to start writing some integrated unit tests:

The code for src/app/about.component.ts is as follows:

import { Component } from '@angular/core';

@Component({
 selector: 'about-page',
 template: `
 <div>
 <h4>{{heading}}</h4>
 <p class="message">{{content}}</p>
 </div>
 `,
})
export class AboutComponent {
 heading = 'This is About Page';
 content = '';
}

Testing

[166]

The code for src/app/about.component.integrated.spec.ts is as follows:

import { ComponentFixture, TestBed }
 from '@angular/core/testing';
import { By } from '@angular/platform-browser';
import { DebugElement } from '@angular/core';

import { AboutComponent } from './about.component';

describe('AboutComponent', () => {
 let component: AboutComponent;
 let fixture: ComponentFixture<AboutComponent>;
 let debugElement: DebugElement;
 let element: HTMLElement;

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [AboutComponent]
 });

 fixture = TestBed.createComponent(AboutComponent);
 component = fixture.componentInstance;
 debugElement = fixture.debugElement.query(By.css('h4'));
 element = debugElement.nativeElement;
 });

 it('should display "This is About Page"', () => {
 fixture.detectChanges();
 expect(element.textContent).toContain(component.heading);
 });
});

The preceding integrated unit test is just checking for the heading value in
AboutComponent. It is lengthy compared to similarly isolated unit tests because we are
testing it in the proximate Angular runtime environment.

Let us understand the test line by line. First, we imported all required Angular testing
utility classes, then the component we need to unit test:

TestBed: This creates the environment for testing Angular applications (creating
Angular modules and components for testing).
ComponentFixture: This is fixture for testing the components; this provides the
properties and methods to access the component instance, DOM elements inside
the component's template, and run the change detection manually.
DebugElement: This provides access to the root element of the component.
HTMLElement: This represents the native DOM HTML element.

www.ebook3000.com

http://www.ebook3000.org

Testing

[167]

Now we can write the integrated unit tests using the Jasmine methods describe(),
beforeEach(), and it().

First, we are configuring our test module using the configureTestingModule() method
in the TestBed class, which is similar to @NgModule() and takes an object as a parameter
with the following properties: providers, declarations, import, and schemas.

Then, we are creating the component that returns a fixture for accessing the component
instance. Once we have an access to the component instance; we query using root element
using the DebugElement class query() method. To the query() method, we need to pass
a predicate; it is passed by a CSS selector using the By.css() method.

The By.css() method matches the elements by the given CSS selector.

The DebugElement class query() method returns the first element matched by the
selector, and we can get all elements using the queryAll() method.

The By class in the @angular/platform-browser module provides two more methods for
accessing elements:

By.all(): This matches all elements
By.directive(): This matches elements that have the given directive present

The native DOM element is accessed using the nativeElement property of the
DebugElement, using which we can access the test and child elements inside of it.

Finally, we are comparing the component heading value to the text on the template.
However, there is one interesting thing in our test detectChanges() method; Angular
won't run the change detection automatically in the test environment, we need to use the
detectChanges() method every time we modify the data.

Let's add a couple of more tests for different scenarios.

The code for src/app/about.component.integrated.spec.ts is as follows:

beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [AboutComponent]
 });

 fixture = TestBed.createComponent(AboutComponent);

Testing

[168]

 component = fixture.componentInstance;
});

describe('heading', () => {
 beforeEach(() => {
 debugElement = fixture.debugElement.query(By.css('h4'));
 element = debugElement.nativeElement;
 });

 it('should display "This is About Page"', () => {
 fixture.detectChanges();
 expect(element.textContent).toContain(component.heading);
 });

 it('should display "new heading"', () => {
 fixture.detectChanges();

 const previousHeading = component.heading;
 component.heading = 'new heading';

 expect(element.textContent).toContain(previousHeading);
 expect(element.textContent)
 .not.toContain(component.heading);

 fixture.detectChanges();
 expect(element.textContent).toContain(component.heading);
 });
});

describe('content', () => {
 beforeEach(() => {
 debugElement = fixture
 .debugElement.query(By.css('.message'));
 element = debugElement.nativeElement;
 });

 it('should be empty', () => {
 fixture.detectChanges();
 expect(element.textContent).toBe(component.content);
 });

 it('should be "new message"', () => {
 component.content = 'new message';
 fixture.detectChanges();
 expect(element.textContent).toBe(component.content);
 });
});

www.ebook3000.com

http://www.ebook3000.org

Testing

[169]

In the second test, we are checking for the modified heading value, and in the third and
fourth tests, we are testing the content property values.

The AboutComponent has an inline template. If it has an external template or external style
sheets, the previously-mentioned unit tests won't work. Angular downloads these files
asynchronously, but our unit tests are running synchronously. We can use the async()
method in the @angular/core/testing module to handle asynchronous operations in
our tests; here is the example unit test of AboutComponent with an external template:

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [AboutComponent]
 });
 }));

 beforeEach(() => {
 fixture = TestBed.createComponent(AboutComponent);
 component = fixture.componentInstance;
 debugElement = fixture.debugElement.query(By.css('h4'));
 element = debugElement.nativeElement;
 });

We just need to wrap the test module creation in the async() method in a
separatebeforeEach() and the rest of the code in different blocks depending on the unit
tests.

We need to chain the configureTestingModule().compileComponents() method to
compile the templates and CSS files if we are using SystemJS. In our application, we are
using the Angular CLI which internally uses webpack does this for us.

Testing components with dependencies
Up till now, we have tested a simple component with two properties, but components
become complex with dependencies such as services, other components, child components,
routes, and forms.

Let's take a look at BooksListComponent, which is dependent on the BookStoreService,
and the BookStoreService method returns the Observables as results, and our template
uses router directives.

We already know how to deal with dependent services using Jasmine's spy() methods. In
the earlier section, we looked at how to write integrated unit test. Let's combine these two
concepts to test the BooksListComponent:

Testing

[170]

The code for src/app/books/books-list/books-
list.component.integrated.spec.ts is as follows:

import { ComponentFixture, TestBed } from
 '@angular/core/testing';
import { async, ComponentFixtureAutoDetect } from
 '@angular/core/testing';
import { DebugElement } from '@angular/core';
import { By } from '@angular/platform-browser';
import { Observable } from 'rxjs/Observable';

import { BooksListComponent } from './books-list.component';
import { BookStoreService } from '../book-store.service';
import { Book } from '../book';

describe('BooksListComponent', () => {
 let fixture: ComponentFixture<BooksListComponent>,
 component: BooksListComponent,
 debugElement: DebugElement,
 element: HTMLElement,
 mockBookStoreService;

 const booksList: Book[] = [{
 id: 1,
 isbn: 9781783980628,
 title: 'Getting Started with Grunt',
 authors: 'Jaime Pillora',
 published: 'February 2014',
 description: 'JavaScript and Grunt.',
 coverImage: 'https://test.com/img1.png'
 }];

 beforeEach(async(() => {

 mockBookStoreService = jasmine
 .createSpyObj('mockBookStoreService', ['getBooks']);
 mockBookStoreService.getBooks
 .and.returnValue(Observable.of(booksList));

 TestBed.configureTestingModule({
 declarations: [
 BooksListComponent
],
 providers: [
 { provide: ComponentFixtureAutoDetect,
 useValue: true },
 { provide: BookStoreService,
 useValue: mockBookStoreService }

www.ebook3000.com

http://www.ebook3000.org

Testing

[171]

]
 });
 }));

 beforeEach(() => {
 fixture = TestBed.createComponent(BooksListComponent);
 component = fixture.componentInstance;
 });
});

We have the initial setup for BooksListComponent. We mocked the
BookStoreService method's getBooks() method to return a dummy Observable of
books. We also set ComponentFixtureAutoDetect to true, and this will run the initial
change detection automatically in every test.

Here is our first test checking value returned from the mockBookStoreService:

it('should display books list', () => {
 debugElement = fixture.debugElement
 .query(By.css('.book-card'));
 element = debugElement.nativeElement.firstElementChild;
 expect(element.style.backgroundImage)
 .toContain(booksList[0].coverImage);
});

Here is our second test testing the component values without change detection:

it('should not display updated books list', () => {

 component.booksList = [{
 id: 2,
 isbn: 9781786462084,
 title: 'Laravel 5.x Cookbook',
 authors: 'Alfred Nutile',
 published: 'September 2016',
 description: 'Laravel 5.x',
 coverImage: 'https://test.com/img2.png'
 }];

 debugElement = fixture.debugElement
 .query(By.css('.book-card'));
 element = debugElement.nativeElement.firstElementChild;

 expect(element.style.backgroundImage)
 .toContain(booksList[0].coverImage);
 expect(element.style.backgroundImage)
 .not.toContain(component.booksList[0].coverImage);
});

Testing

[172]

In the earlier-mentioned test without calling the detectChanges() method, the
component still uses the old values after assigning the booksList with the new set of
books.

Here is our third test to check the updated values with change detection:

it('should display updated books list', () => {
 component.booksList = [{
 id: 2,
 isbn: 9781786462084,
 title: 'Laravel 5.x Cookbook',
 authors: 'Alfred Nutile',
 published: 'September 2016',
 description: 'Laravel 5.x',
 coverImage: 'https://test.com/img2.png'
 }];

 fixture.detectChanges();

 debugElement = fixture.debugElement
 .query(By.css('.book-card'));
 element = debugElement.nativeElement.firstElementChild;

 expect(element.style.backgroundImage)
 .toContain(component.booksList[0].coverImage);
});

Summary
We started this chapter by discussing different testing mechanisms, and you learned why
testing is necessary. We looked at the different unit testing strategies to test Angular code.

You learned how to write isolated unit tests and integrated unit tests for various parts
(services, components, and so on) of the Angular application. By the end of this chapter, a
user should have a good understanding of how to write the unit tests for Angular
applications.

www.ebook3000.com

http://www.ebook3000.org

8
Angular Material

In this chapter, we will learn how to develop the visually compelling application using
Angular Material components. We look at different UI controls provided by Angular
Material and how to use them in various scenarios. After going through this chapter, the
reader understands the following concepts:

Material design
How to use Material design components

Introduction
Angular Material is a set of high-quality UI components developed by the Angular team-
based Google Material design specification. These UI components help us to build a single,
good-looking UI that spans across multiple devices.

Getting started
In this chapter, you are going to learn how to use UI components provided by Angular
Material to build the applications. Instead of looking at individual controls, we are going to
develop a complete application using these components.

In Chapter 6, Building a Book Store Application, we built a Book Store application using
Material Design Lite, where we wrote a lot of boilerplate code to make our application look
good. We are going to develop the same application using Angular Material; learn how it
helps to achieve similar functionality with less code to make a better-looking application.

Angular Material

[174]

Material Design Lite is also based on the Google Material design
specification only; it does not rely on any JavaScript frameworks.

Project setup
The following are the steps to include Angular Material into our Book Store application. We
can use the book-store-start application under Chapter8 source code to get started
with the setup.

Let us first install Angular Material. The following command will install Angular Material:

npm install @angular/material --save

Now we will include Angular animations into AppModule. Some of the Angular Material
components depends on the Angular animations module for advanced transitions. Let's
install and include it in our project.

npm install @angular/animations --save

Import it in our AppModule and add it to @NgModule() imports array:

import { BrowserAnimationsModule } from
 '@angular/platform-browser/animations';

@NgModule({
 ...
imports: [
 BrowserModule,
 HttpModule,
 BrowserAnimationsModule
],
 ...
})
export class AppModule { }

Now we will include a theme to index.html file.

www.ebook3000.com

http://www.ebook3000.org

Angular Material

[175]

We should include a theme for all Material component styles, under the
node_modules/@angular/material/prebuilt-themes folder, we have the following
four out-of-the-box themes available:

deeppurple-amber

indigo-pink

pink-bluegrey

purple-green

We can include any one of the preceding themes, or we can include our custom theme also.
For our application, we are going to use the indigo-pink theme, so let's add it to our
index.html file:

<link href="../node_modules/@angular/material/
 prebuilt-themes/indigo-pink.css" rel="stylesheet">

Let's add HammerJS for gesture support.

Some of the Angular Material components such as MdTooltip and MdSlider depend on
HammerJS for gestures. We need to install and include it to our AppModule:

npm install hammerjs --save

Import it in our AppModule:

import 'hammerjs';

Angular Material setup for our application is done. Let us also include the Roboto font and
Material design icons to our index.html. These are optional, and we can use any font or a
different set of icons:

<link rel="stylesheet" href="https://fonts.googleapis.com/css?
 family=Roboto:300,400,500">

<link rel="stylesheet" href="https://fonts.googleapis.com/css?
 family=Material+Icons">

Angular Material

[176]

Using Angular Material components
To begin with Angular Material first, we are going to develop a master-detail page. To
host this page and other pages, we need a layout in our application.

We are going to use CSS flexbox for designing our layouts. Instead of writing a lot of CSS by
hand, the Angular team developed a module named @angular/flex-layout, the flex
layout module provided directives for using flexbox declaratively in Angular templates. We
need to install and include it to our AppModule:

npm install @angular/flex-layout --save

Add it to AppModule:

import { FlexLayoutModule } from '@angular/flex-layout';

@NgModule({
 ...
 imports: [
 BrowserModule,
 HttpModule,
 BrowserAnimationsModule,
 FlexLayoutModule
],
 ...
})

The Angular FlexLayoutModule can be used independently of Angular
Material.

To learn about the flexbox layout, visit the following links:

https://css-tricks.com/snippets/css/a-guide-to-flexbox/

https://github.com/angular/flex-layout/

At the time of writing this chapter, Angular Material is still in beta 3, and
the APIs might change in future. Source code provided with the book will
be updated to accommodate the latest changes in the framework.

www.ebook3000.com

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://github.com/angular/flex-layout/
http://www.ebook3000.org

Angular Material

[177]

Master-detail page
Let us create the master-detail page to show the books list and the selected book
information from the books list.

The code for src/app/books/master-detail/master-detail.component.ts is as
follows:

import { Component, OnInit } from '@angular/core';
import { Book } from '../book';
import { BookStoreService } from '../book-store.service';

@Component({
 selector: 'bl-master-detail',
 styleUrls: ['./master-detail.component.scss'],
 templateUrl: './master-detail.component.html'
})
export class MasterDetailComponent implements OnInit {
 booksList: Book[] = [];
 selectedBook: Book;

 constructor(private bookStoreService: BookStoreService) {
 }

 ngOnInit() {
 this.bookStoreService
 .getBooks()
 .subscribe(response => this.booksList = response);
 }
}

The component is exactly same as the previous chapter. All the material-related code is in
the template. As we are going to build the master-detail page, we need the left container
to display the list of books, right-side container to display the selected book information:

We can use the <md-sidenav> to for the left-side container
The <md-sidenav> and associated content live inside of an <md-sidenav-
container>

We can use a div for associated content inside <md-sidenav-container> to
display right-side container
The <md-sidenav mode="side"> display the sidenav side-by-side with the
right-side container.
In the <md-sidenav>, we need to display the list of books, we can use <md-
list> or <md-nav-list>:

Angular Material

[178]

The code for src/app/books/master-detail/master-detail.component.html is as
follows:

<div fxLayout="column" fxFlex>
 <h2 class="page-title">Books List Master Detail Page</h2>
 <md-sidenav-container flexLayout-="row" fxFlex
 class="books-list">
 <md-sidenav mode="side" opened>
 <md-nav-list>
 <md-list-item *ngFor="let book of booksList"
 (click)="selectedBook = book">

 <h2 md-line>{{book.title}}</h2>
 <p md-line> {{book.authors}} </p>
 </md-list-item>
 </md-nav-list>
 </md-sidenav>
 <div class="books-list-item" fxFlex>
 <div *ngIf="selectedBook" class="books-list-item--detail"
 fxLayout="row" fxFlex.sm="column">
 <div class="books-list-item--coverimage">

 </div>
 <div class="books-list-item--content" fxFlex>
 <h3>{{selectedBook.title}}</h3>
 <p>{{selectedBook.authors}}</p>
 <p>{{selectedBook.published}}</p>
 <p>ISBN: {{selectedBook.isbn}}</p>
 <p>{{selectedBook.description}}</p>
 </div>
 </div>
 </div>
 </md-sidenav-container>
</div>

One last thing we need to do to make our component work, we are using Angular Material
UI components such as <md-sidenav>, <md-sidenav-container>, and <md-nav-list>.
Our application has no knowledge of these components, so we need to import and include
their respective modules to the AppModule.

www.ebook3000.com

http://www.ebook3000.org

Angular Material

[179]

We are going to add material modules to separate module and include that module to
AppModule, and this keeps our AppModule smaller and cleaner:

The code for src/app/app-material.module.ts is as follows:

import { NgModule } from '@angular/core';
import {
 MdSidenavModule,
 MdListModule
} from '@angular/material';

const MATERIAL_MODULES = [
 MdSidenavModule,
 MdListModule
];

@NgModule({
 imports: MATERIAL_MODULES,
 exports: MATERIAL_MODULES
})
export class AppMaterialModule { }

Any time we use a new Material component, its respective module should be added to
AppMaterialModule:

The code for src/app/app.module.ts is as follows:

import { AppMaterialModule } from './app-material.module';

@NgModule({
 ...
 imports: [
 BrowserModule,
 HttpModule,
 BrowserAnimationsModule,
 FlexLayoutModule,
 AppMaterialModule
]
 ...
})

Angular Material

[180]

The following is the output of our MasterDetailComponent:

We cannot view the preceding output yet; for that, we need to use the component selector
in our AppComponent template. We also need to add the MasterDetailComponent to our
AppModule declarations array.

In AppComponent, we need a header to display the application title and other options; we
also want to show the application navigation.

For the header, we can use <md-toolbar>; for navigation, once again use <md-sidenav>,
<md-nav-list>. In the AppComponent, we are going to use <md-tab-group> to display
multiple components based on the user selection of tabs:

The code for src/app/app.component.ts is as follows:

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']

www.ebook3000.com

http://www.ebook3000.org

Angular Material

[181]

})
export class AppComponent {
 links = [{
 name: 'Books'
 }];
}

The code for src/app/app.component.html is as follows:

<div fxLayout="column" fxFlex>
 <md-toolbar color="primary">
 <button md-icon-button (click)="sidenav.toggle()">
 <md-icon>menu</md-icon>
 </button>
 Book Store
 </md-toolbar>

 <md-sidenav-container fxFlex>
 <md-sidenav mode="over" #sidenav>
 <md-nav-list>
 <md-list-item *ngFor="let link of links">
 <p>{{link.name}}</p>
 </md-list-item>
 </md-nav-list>
 </md-sidenav>
 <div class="content" fxLayout="column" fxFlex>
 <md-tab-group>
 <md-tab label="Master Detail">
 <div fxFlex class="master-detail-container">
 <bl-master-detail fxFlex></bl-master-detail>
 </div>
 </md-tab>
 <md-tab label="List">
 LIST
 </md-tab>
 </md-tab-group>
 </div>
 </md-sidenav-container>
</div>

In the preceding template, the sidenav is hidden by default using <md-sidenav
mode="over">. The over mode displays the sidenav on top all elements, and the rest of
the screen is overlaid. We are displaying a menu icon in <md-toolbar> using <md-icon>
inside a button that toggles the sidenav using the toggle() method of <md-sidenav>.
We are invoking it using the #sidenav template reference variable.

Angular Material

[182]

We should also include MdToolbarModule, MdButtonModule, MdIconModule, and
MdTabsModule in AppMaterialModule.

Start the application using the npm start command, and we can view the following
output:

www.ebook3000.com

http://www.ebook3000.org

Angular Material

[183]

We successfully built our first two components using Angular Material. Let us create a
different view to display the list of books using <md-card>.

Books list page
In this books list page, we are going to show books in the list view interface; for that, we are
going to flexbox, and inside we will use <md-card> to display the books:

The code for src/app/books/list/list.component.ts is as follows:

import { Component, OnInit } from '@angular/core';
import { Book } from '../book';
import { BookStoreService } from '../book-store.service';

@Component({
 selector: 'bl-list',
 styleUrls: ['./list.component.scss'],
 templateUrl: './list.component.html'
})
export class ListComponent implements OnInit {
 booksList: Book[] = [];

 constructor(private bookStoreService: BookStoreService) {
 }

 ngOnInit() {

Angular Material

[184]

 this.getBooks();
 }

 getBooks() {
 this.bookStoreService
 .getBooks()
 .subscribe(response => this.booksList = response);
 }

 deleteBook(id: number) {
 this.booksList = this.booksList
 .filter(book => book.id !== id);
 this.bookStoreService.deleteBook(id)
 .subscribe(result => this.getBooks());
 }
}

The earlier-mentioned component has logic to get the books and delete the book using the
service.

The code for src/app/books/list/list.component.html is as follows:

<div fxLayout="column" fxFlex *ngIf="booksList.length > 0">
 <h2 class="page-title">Books List Page</h2>
 <section fxLayout="row" fxLayoutWrap fxLayout.sm="column"
 fxLayoutGap="24px" fxLayoutAlign="center">

 <md-card class="book-card" *ngFor="let book of booksList">

 <md-card-actions>
 <button md-button>DETAIL</button>
 <button md-button (click)="deleteBook(book.id)">
DELETE
 </button>
 </md-card-actions>
 </md-card>

 </section>
</div>

The <md-card> has other sections such as <md-card-title>, <md-card-subtitle>, and
<md-card-footer> to display extra information. We should include MdcardModule in
AppMaterialModule and ListComponent in the AppModule declarations array.

www.ebook3000.com

http://www.ebook3000.org

Angular Material

[185]

Now we should use the <bl-list> selector in the AppComponent template inside <md-tab
label="List"></md-tab> to show the component:

<md-tab label="List">
 <div fxFlex class="books-list-container">
 <bl-list fxFlex></bl-list>
 </div>
</md-tab>

Here is the output we can view in the browser:

If we click on any of the DELETE buttons, it will remove the book and update the page, and
it won't show any messages to the user. Let us use the MdSnackBar component to show the
message when a book deletion is successful.

Angular Material

[186]

To use the MdSnackBar component, it needs to be injected into the constructor:

import { MdSnackBar } from '@angular/material';

constructor(
private bookStoreService: BookStoreService,
 private snackBar: MdSnackBar
) { }

We can use the MdSnackBar method's openFromComponent() method or the open()
method to show it:

deleteBook(id: number) {
 this.booksList = this.booksList
 .filter(book => book.id !== id);
 this.bookStoreService.deleteBook(id)
 .subscribe(result => {
 if (result.ok) {
 this.openSnackBar();
 }
 this.getBooks();
 });
 }

 openSnackBar() {
 this.snackBar.open('Book Deleted', 'CLOSE', {
 duration: 1000
 });
 }

Here is the output of using the MdSnackBar component:

www.ebook3000.com

http://www.ebook3000.org

Angular Material

[187]

In our examples, we get the response quickly then we show the output immediately.
However, in real-world scenarios, there will be a delay in getting the response, the screen
will be blank, and the user does not understand what is happening. We can use <md-
progress-spinner> to show the progress till we get the response from the server.

We should include the <md-progress-spinner> at the top of our template; we show it by
default and hide it when we get the response:

<md-progress-spinner color="accent" mode="indeterminate"
 [style.display]="spinnerVisibility"
class="spinner">
</md-progress-spinner>

In the component, we are using the spinnerVisibility property to control the visibility
of the <md-progress-spinner> component:

spinnerVisibility = 'block';

 getBooks() {
 this.bookStoreService
 .getBooks()

Angular Material

[188]

 .subscribe(response => {
 this.booksList = response;
 this.spinnerVisibility = 'none';
 });
 }

Here is the output of using the <md-progress-spinner> component:

In our examples, we might not be able to see the spinner; to simulate the delay, we use the
RxJS delay() operator in the BookStoreService:

The code for src/app/books/book-store.service.ts is as follows:

import 'rxjs/add/operator/delay';

getBooks(): Observable<Book[]> {
 const url = `${this.baseUrl}`;
 return this.http.get(url)
 .delay(5000)
 .map(response => response.json() as Book[]);
}

Now our getBooks() method waits five seconds to return the response.

We should include MdProgressSpinnerModule, MdSnackBarModule in
AppMaterialModule.

www.ebook3000.com

http://www.ebook3000.org

Angular Material

[189]

Add book dialog
In this section, you are going to learn how to implement a form using Angular Material
form controls and a dialog using MdDialog:

The code for src/app/books/add-book-dialog/add-book-dialog.component.ts is
as follows:

import { Component } from '@angular/core';
import { MdDialogRef } from '@angular/material';

@Component({
 selector: 'add-book-dialog',
 styleUrls: ['./add-book-dialog.component.scss'],
 templateUrl: './add-book-dialog.component.html'
})
export class AddBookDialogComponent {
 constructor(private dialogRef:
 MdDialogRef<AddBookDialogComponent>) {}
}

In the preceding component, we are injecting the MdDialogRef into the constructor, which
can be used to refer to the dialog itself.

The code for src/app/books/add-book-dialog/add-book-dialog.component.html
is as follows:

<h3>Add Book</h3>
<form #form="ngForm" (ngSubmit)="dialogRef.close(form.value)"
 ngNativeValidate>

 <div fxLayout="column" fxLayoutGap="8px">
 <md-input-container>
 <input mdInput ngModel name="title"
placeholder="Book Title" required>
 </md-input-container>
 <md-input-container>
 <input mdInput ngModel name="authors"
placeholder="Authors" required>
 </md-input-container>
 <md-input-container>
 <input mdInput ngModel name="published"
placeholder="Published" required>
 </md-input-container>
 <md-input-container>
 <input mdInput ngModel name="isbn"
placeholder="ISBN" required>

Angular Material

[190]

 </md-input-container>
 <md-input-container>
 <input mdInput ngModel name="coverImage"
placeholder="Cover Image" required>
 </md-input-container>
 <md-input-container>
 <textarea mdInput ngModel name="description"
placeholder="Description"
rows="3" cols="60" required>
</textarea>
 </md-input-container>
 </div>

 <md-dialog-actions align="end">
 <button md-button type="button"
(click)="dialogRef.close()">Cancel</button>
 <button md-button color="accent">Save Book</button>
 </md-dialog-actions>
</form>

In the preceding template, we are using the Angular forms API to bind form controls and
the mdInput directive with the text input wrapped in <md-input-container> for material
styles. Finally, we are using (ngSubmit)="dialogRef.close(form.value)" to close the
form and pass the form value.

We should include AddBookDialogComponent to the declarations array and
FormsModule to the imports array in AppModule.

We can use the earlier component to display the add book dialog. Let us add a button in the
toolbar to show the dialog, as follows:

The code for src/app/app.component.html is as follows:

<md-toolbar color="primary">
 <button md-icon-button (click)="sidenav.toggle()">
 <md-icon>menu</md-icon>
 </button>
 Book Store

 <button md-mini-fab (click)="openAddBookDialog()">
 <md-icon>add</md-icon>
 </button>
 </md-toolbar>

www.ebook3000.com

http://www.ebook3000.org

Angular Material

[191]

The code for src/app/app.component.ts is as follows:

import { Component } from '@angular/core';
import { MdDialog, MdSnackBar } from '@angular/material';
import { AddBookDialogComponent, BookStoreService }
 from './books';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 links = [{
 name: 'Books'
 }];

 constructor(private dialog: MdDialog,
 private snackBar: MdSnackBar,
 private bookStoreService: BookStoreService) { }

 openAddBookDialog() {
 this.dialog.open(AddBookDialogComponent)
 .afterClosed()
 .filter(book => !!book)
 .switchMap(book => this.bookStoreService.addBook(book))
 .subscribe(result => {
 if (result.ok) {
 this.openSnackBar();
 }
 });
 }

 openSnackBar() {
 this.snackBar.open('Book Added', 'CLOSE', {
 duration: 1000
 });
 }
}

Angular Material

[192]

In the component, we are injecting the MdDialog into the constructor; whenever the user
clicks on the add button in the toolbar, it will invoke the openAddBookDialog() method.
Inside, we are using the MdDialog method's open() method to show the add book dialog.
Then, we are using afterClosed() on MdDialog to get the value passed from the
dialogRef.close(form.value) event in the add book form.

We should include MdDialogModule and MdInputModule in AppMaterialModule and
AddBookDialogComponent in the entryComponents and declarations arrays. Dialogs
can't be resolved dynamically, so we must add them to entryComponents.

Here is the output of AddBookDialogComponent:

www.ebook3000.com

http://www.ebook3000.org

Angular Material

[193]

User registration form
To learn the remaining Angular Material controls, let us build the user registration form
and create a new application from the current stage of the Book Store application, as
follows:

The code for src/app/user-registration/user-registration.component.ts is as
follows:

import { Component } from '@angular/core';

@Component({
 selector: 'user-registration',
 templateUrl: './user-registration.component.html',
 styles: [`
 .user-registration-form {
 width: 60%
 }
 .gender-radio-group {
 display: inline-flex;

Angular Material

[194]

 flex-direction: row;
 }
 .gender-radio-button {
 margin: 5px;
 }
 `]
})
export class UserRegistrationComponent {
 countries: Array<object> = [
 {code: 'CA', name: 'Canada'},
 {code: 'SW', name: 'Switzerland'},
 {code: 'IN', name: 'India'},
 {code: 'UK', name: 'United Kingdom'},
 {code: 'US', name: 'Canada'}
];

 genders: Array<string> = [
 'Male',
 'Female',
 'Other'
];

 submitUserForm(value: Object) {
 console.log(value);
 }
}

The code for src/app/user-registration/user-registration.component.html is
as follows:

<md-select name="country" placeholder="Country" ngModel
required>
 <md-option *ngFor="let country of countries"
[value]="country.code">
 {{ country.name }}
 </md-option>
</md-select>
<md-radio-group class="gender-radio-group" ngModel
name="gender" class="m-t" required>
 <md-radio-button class="gender-radio-button"
*ngFor="let gender of genders" [value]="gender">
 {{gender}}
 </md-radio-button>
</md-radio-group>
<md-slide-toggle ngModel name="isAdmin" class="m-t">
Admin User
</md-slide-toggle>
<md-checkbox name="agreement" ngModel class="m-t" required>

www.ebook3000.com

http://www.ebook3000.org

Angular Material

[195]

 I agree to the Terms of Service
</md-checkbox>

The preceding is just a snippet from the UserRegistrationComponent template; the code
snippet shows the new controls, such as <md-select>, <md-radio-group>,<md-slide-
toggle>, <md-checkbox>. We should include MdSelectModule, MdRadioModule,
MdCheckboxModule, and MdSlideToggleModule in AppMaterialModule and
UserRegistrationComponent in the AppModule declarations array.

To navigate to the earlier code, we should add routing to our application. Let us refactor
our application. Now we need a container component to show the master-detail and
books-list components:

The code for src/app/books/books-container.component.ts is as follows:

import { Component } from '@angular/core';

@Component({
 selector: 'books-container',
 template: `
 <md-tab-group>
 <md-tab label="Master Detail">
 <div fxFlex class="master-detail-container">
 <bl-master-detail fxFlex></bl-master-detail>
 </div>
 </md-tab>
 <md-tab label="List">
 <div fxFlex class="books-list-container">
 <bl-list fxFlex></bl-list>
 </div>
 </md-tab>
 </md-tab-group>
 `,
 styles: [`
 .master-detail-container {
 height: calc(100vh - 113px);
 overflow: hidden;
 padding: 1rem;
 }

 .books-list-container {
 height: 100%;
 padding: 1rem;
 overflow-x: hidden;
 overflow-y: auto;
 }
 `]

Angular Material

[196]

})
export class BooksContainerComponent {
}

We should also refactor our AppComponent to show the components inside of it. In the
template, we are adding <router-outlet> to show components based on selected routes:

<md-sidenav-container fxFlex>
 <md-sidenav mode="over" #sidenav>
 <md-nav-list>
 <a md-list-item [href]="link.path"
 *ngFor="let link of links">
 {{ link.name }}

 </md-nav-list>
 </md-sidenav>
 <div class="content" fxLayout="column" fxFlex>
 <router-outlet></router-outlet>
 </div>
</md-sidenav-container>

In template, we need to update the links array:

links = [
 { name: 'Books', path: 'books' },
 { name: 'Registration', path: 'registration' }
];

Finally, we need to include the routes in the AppModule:

The code for src/app/app.module.ts is as follows:

import { RouterModule, Routes } from '@angular/router';

const routes: Routes = [
 {path: '', redirectTo: 'books', pathMatch: 'full'},
 {path: 'books', component: BooksContainerComponent },
 {path: 'registration', component: UserRegistrationComponent }
];

@NgModule({
 ...
 imports: [
 ...,
 RouterModule.forRoot(routes)
],

www.ebook3000.com

http://www.ebook3000.org

Angular Material

[197]

})
export class AppModule {
}

Here is the output of the user registration form with application routing:

Adding themes
Themes let the user switch between different color schemes. Let us include a theme.scss
file to our application. Till now, we have used the indigo-pink color scheme; let us use the
add color scheme to the application:

The code for src/theme.scss is as follows:

@import '~@angular/material/_theming';

@include mat-core();

$primary: mat-palette($mat-red);
$accent: mat-palette($mat-blue);

$theme: mat-light-theme($primary, $accent);

Angular Material

[198]

@include angular-material-theme($theme);

We added the red-blue theme for the application; we can choose any palettes out of the
Material design color palettes (https://material.io/guidelines/style/color.html).

We also need to include the theme.scss file to the angular-cli.json file styles array:

"styles": [
"styles.scss",
 "theme.scss"
]

After adding the theme.scss file, we need to restart the application to see the theme effect.

Here is the final output:

www.ebook3000.com

https://material.io/guidelines/style/color.html
http://www.ebook3000.org

Angular Material

[199]

Summary
We started this chapter with the introduction to material design, and we looked at how to
add the Angular Material to our project. Then, you learned how to use the flex layout and
various Angular Material components to build different kinds of UI, such as the Master
Detail page, List view page, and forms. Finally, we looked at how to add themes from the
Material design color palettes.

Index

@
@NgModule()
 used, for structuring application components into

feature modules 150

A
aliased class providers
 using 70
alternate class providers
 using 69
Angular application
 Angular component, using 24
 npm packages 25
 setting up 16, 17, 18, 19, 20, 21, 22, 26, 27
 SystemJS 23
 writing 16
Angular CLI
 reference 127
Angular forms API
 about 92
 FormArray 92, 95
 FormControl 92
 FormGroup 92, 94
Angular Material components
 book dialog, adding 189, 190, 192
 books list page 183, 186, 188
 master-detail page, creating 177, 179, 180
 registration form 195
 user registration form 193, 197
 using 176
Angular Material
 about 173
 components, using 176
 project setup 174
Angular router
 navigation 142

 route params 142, 144
Angular
 about 6
 features 7
 Observables 77
animations.min.js polyfill file
 download link 148
AsyncPipe
 using 81
attribute binding 38
attribute directives
 about 45
 ngClass directive 46
 ngStyle directive 45

B
Babel
 reference 9
book list application
 building 54
Book Store application
 developing 126
books search component
 building 82, 84, 88
built-in directives
 about 42
 attribute directives 45
 structural directives 42

C
class provider
 aliased class provider 70
 alternate class provider 69
 using 67, 68
 using, with dependencies 68, 69

www.ebook3000.com

http://www.ebook3000.org

[201]

D
data
 displaying 35
 sharing, services used 63, 64, 65, 66
 working with 34
dependencies
 class provider, using with 68, 69
dependency injection 67
DOM (Document Object Model) 38
DRY (Don't Repeat Yourself) principle 55

E
ECMAScript 2015 (ES2015) 9
ECMAScript 6 (ES6) 9
environment setup
 Node.js, installing 8
 npm, installing 8
event binding 39, 40
expect() function 156

F
flexbox layout
 reference 176
FormControl
 about 92
 creating 92
 input control states 93
 input control value, accessing 93
 input control value, resetting 93
 input control value, setting 93
forms
 limitations 91

H
HammerJS 175
HTTP Client
 GET requests, making 131, 134
 used, for communicating with REST service 127,

130

I
input properties
 about 57, 58
 aliasing 58, 59

integrated unit tests
 components with dependencies, testing 169,

171

 components, testing 165, 166, 169
interpolation syntax 35, 36, 37
isolated unit tests
 about 157, 158
 Angular HTTP service, mocking 163
 components, testing 164
 HTTP service, mocking 162
 services, testing 161
 writing 159, 160

J
Jasmine
 afterAll() function 157
 afterEaxch() function 157
 basics 156
 beforeAll() function 157
 beforeEach() function 157
 describe() 156
 expect() function 157
 it() function 156
 matchers 156
JSON server
 reference 128

L
language options
 about 8
 ECMAScript 2015 9
 ECMAScript 5 (ES5) 9
 TypeScript 9

M
master-detail component
 building 47, 48, 49, 50, 51, 52
Material design color palettes
 reference 198
Material Design Lite
 about 173
 reference 136
multiple components
 working with 55, 56, 57

[202]

N
ngClass directive 46
ngFor directive
 about 43
 syntax 44
ngIf directive 43
ngModel directive
 ngForm directive, using 105, 106
 used, for accessing input control 100
 used, for binding component property 102
 used, for binding string value 101
 using 99
ngModelGroup directive
 using 110
ngStyle directive 45
ngSubmit method
 used, for submitting form 106, 108
ngSwitch directive 44
Node
 reference 8
npm (node package manager) 7

O
Observable streams
 merging 78
Observable.interval() method
 using 79
Observable
 about 72, 74, 77
 mapping values 77
 stream 77
Observer 73
operators 76
output properties
 about 59, 60, 61
 aliasing 61, 62

P
project setup 31, 32, 33, 34
property binding
 about 37
 example 37
 syntax 37

R
reactive forms
 about 117
 cons 125
 pros 125
 used, for creating registration form 117
reactive programming
 about 72
 reference 73
Reactive-Extensions for JavaScript (RxJS)
 about 72
 reference 89
registration form
 creating 96, 97, 99
 creating, with [formGroup] 119
 creating, with formControlName 120
 creating, with formGroupName 120
 creating, with Validators 118
 CustomValidators, using 122
 FormBuilder, using 121
 input control value, accessing with ngModel 100
 ngModel directive, using 99
 ngModel, used for binding string value 101
 validations, adding 112, 114, 115, 116
registration forms
 creating, with FormControl 118
 creating, with FormGroup 118
routed components
 animating 148
RouterOutlet directive
 about 139
 Named RouterOutlet 142
routes
 defining 138
routing 137

S
services
 used, for sharing data 63, 64, 65, 66
structural directives
 about 42
 ngFor directive 43
 ngIf directive 43
 ngSwitch directive 44

www.ebook3000.com

http://www.ebook3000.org

subscription 76

T
template driven forms
 about 96
 cons 116
 pros 116
 registration form, creating 96
test-driven development (TDD) 154
testing
 about 154
 configuration files 155
 end-to-end testing 155
 tools 155
 unit testing 155
themes
 adding 197
two-way data binding 41, 42
TypeScript
 about 9
 Any 12
 array 11
 Boolean 11

 classes 14
 enum 12
 function declaration, named function 14
 function expression, anonymous function 14
 functions 13
 installing 10
 number 11
 reference 16
 string 11
 types 10
 void 12

U
unit tests
 about 157
 integrated unit tests 165
 isolated unit tests 157

W
Web Animations API
 about 148
 reference 148

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction to Angular
	What is new in Angular?

	Setting up the environment
	Installing Node.js and npm

	Language choices
	ECMAScript 5
	ECMAScript 2015
	TypeScript
	Installing TypeScript
	TypeScript basics – types
	String
	Number
	Boolean
	Array
	Enum
	Any
	Void
	Functions
	Function declaration – named function
	Function expression – anonymous function

	Classes

	Writing your first Angular application
	Set up the Angular application
	Step 1
	Step 2
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	SystemJS
	Using the Angular component
	Understanding npm packages

	Step 9
	Step 10

	Using Angular CLI
	Getting started with Angular CLI

	Summary

	Chapter 2: Basics of Components
	Getting started
	Project setup

	Working with data
	Displaying data
	Interpolation syntax
	Property binding
	Attribute binding

	Event binding
	Two-way data binding

	Built-in directives
	Structural directives
	ngIf
	ngFor
	Understanding ngFor syntax

	ngSwitch

	Attribute directives
	ngStyle
	ngClass

	Building the master-detail component
	Summary

	Chapter 3: Components, Services, and Dependency Injection
	Introduction
	Working with multiple components
	Input properties
	Aliasing input properties

	Output properties
	Aliasing output properties

	Sharing data using services
	Dependency injection
	Using a class provider
	Using a class provider with dependencies
	Using alternate class providers
	Using aliased class providers

	Summary

	Chapter 4: Working with Observables
	Basics of RxJS and Observables
	Reactive programming
	Observer
	Observable
	Subscription
	Operators

	Observables in Angular
	Observable stream and mapping values
	Merging Observable streams
	Using the Observable.interval() method
	Using AsyncPipe
	Building a Books Search component

	Summary

	Chapter 5: Handling Forms
	Why are forms hard?
	Angular forms API
	FormControl, FormGroup, and FormArray
	FormControl
	Creating a form control
	Accessing the value of an input control
	Setting the value of input control
	Resetting the value of an input control
	Input control states

	FormGroup
	FormArray

	Template driven forms
	Creating a registration form
	Using the ngModel directive
	Accessing an input control value using ngModel
	Using ngModel to bind a string value
	Using ngModel to bind a component property
	Using the ngForm directive
	Submitting a form using the ngSubmit method
	Using the ngModelGroup directive
	Adding validations to the registration form

	Pros and cons of template driven forms

	Reactive forms
	Creating a registration form using reactive forms
	Using FormGroup, FormControl, and Validators
	Using [formGroup], formControlName, and formGroupName
	Using FormBuilder
	CustomValidators

	Pros and cons of reactive forms

	Summary

	Chapter 6: Building a Book Store Application
	Book Store application
	HTTP
	Making GET requests

	Routing
	Defining routes
	RouterOutlet Directive
	Named RouterOutlet

	Navigation
	Route params
	Animating routed components

	Feature modules using @NgModule()
	Summary

	Chapter 7: Testing
	Testing
	Unit testing
	End-to-end testing
	Tooling
	Configuration files

	Jasmine basics
	Unit testing
	Isolated unit tests
	Writing basic isolated unit tests
	Testing services
	Mocking dependencies

	Testing components

	Integrated unit tests
	Testing components
	Testing components with dependencies

	Summary

	Chapter 8: Angular Material
	Introduction
	Getting started
	Project setup

	Using Angular Material components
	Master-detail page
	Books list page
	Add book dialog
	User registration form

	Adding themes
	Summary

	Index

